Презентация по информатике на тему история развития вычислительной техники". История развития вычислительной техники от абака до компьютера. Презентация история развития вт



Основные даты Около 3000 лет до нашей эры - счёты в Китае. 1642г. - Первая механическая суммирующая машина Паскаля. 1694г. - Первая машина Лейбница. 1830г. – Ч. Бэббиджем разработан первый программируемый компьютер. 1867г. - Изобретена пишущая машина. 1890г. – Счётно-аналитическая машина Холлерита. 1930г. - Первый аналоговый компьютер Буша. 1944г. - Первый цифровой компьютер Айкена (МАРК 1). 1946г. - Первый полностью электронный цифровой компьютер Моушли и Эккерта (ЭНИАК). 1948г. - Изобретён транзистор. 1949г. - Завершена работа над первым компьютером с хранимой программой.


Основные даты 1951г. - Первая серийная ЭВМ (ЮНИВАК). 1964г. - Появление интегральных схем. 1965г. - Первый мини-компьютер е г. - Создание больших интегральных схем. 1977г. - Первый микрокомпьютер Возняка и Джобса, выпущенный фирмой APPLE 1980г. - Создан центральный процессор на одном кремниевом кристалле е г. - Появились сверхбольшие интегральные схемы.


30 тыс. лет до н.э. Обнаружена в раскопках так называемая "вестоницкая кость" с зарубками. Позволяет историкам предположить, что уже тогда наши предки были знакомы с зачатками счета.


VI-V век до н.э. Историю цифровых устройств начать следует со счетов. Подобный инструмент был известен у всех народов. Древнегреческий абак (доска или "саламинская доска" по имени острова Саламин в Эгейском море) представлял собой посыпанную морским песком дощечку. На песке проходились бороздки, на которых камешками обозначались числа. Одна бороздка соответствовала единицам, другая - десяткам и т.д. Если в какой-то бороздке при счете набиралось более 10 камешков, их снимали и добавляли один камешек в следующем разряде. Римляне усовершенствовали абак, перейдя от деревянных досок, песка и камешков к мраморным доскам с выточенными желобками и мраморными шариками.


Китайские счеты суан-пан состояли из деревянной рамки, разделенной на верхние и нижние секции. Палочки соотносятся с колонками, а бусинки с числами. У китайцев в основе счета лежала не десятка, а пятерка. Она разделена на две части: в нижней части на каждом ряду располагаются по 5 косточек, в верхней части - по две. Таким образом, для того чтобы выставить на этих счетах число 6, ставили сначала косточку, соответствующую пятерке, и затем прибавляли одну в разряд единиц. У японцев это же устройство для счета носило название серобян.


На Руси долгое время считали по косточкам, раскладываемым в кучки. Примерно с XV века получил распространение "дощаный счет", завезенный, видимо, западными купцами вместе с текстилем. "Дощаный счет" почти не отличался от обычных счетов и представлял собой рамку с укрепленными горизонтальными веревочками, на которые были нанизаны просверленные сливовые или вишневые косточки.




IX век н.э. Индийские ученые сделали одно из важнейших в математике открытий. Они изобрели позиционную систему счисления, которой теперь пользуется весь мир. При записи числа, в котором отсутствует какой-либо разряд (например, 101 или 1204), индийцы вместо названия цифры говорили слово "пусто". При записи на месте "пустого" разряда ставили точку, а позднее рисовали кружок. Арабские математики перевели слово "пусто" по смыслу на свой язык - они говорили "сифр" (цифра). Современное слово "нуль" родилось сравнительно недавно - позднее, чем "цифра". Оно происходит от латинского слова "nihil" - "никакая".


Приблизительно в 850 году н.э. арабский ученый математик Мухаммед бен Муса аль-Хорезми (из города Хорезма на реке Аму- Дарья) написал книгу об общих правилах решения арифметических задач при помощи уравнений. Мухаммеду бен Муса аль- Хорезми мы обязаны появлению термина "алгоритм".


40-е годы XVII в. Блез Паскаль (), крупнейший ученый в истории человечества – математик, физик, философ и богослов, создал в 1642г. первое механическое устройство – суммирующую машину, которая позволяла складывать и вычитать числа в десятичной системе счисления. Она представляла собой систему взаимодействующих колёсиков, каждое из которых соответствовало одному разряду десятичного числа и содержало цифры от 0 до 9. Когда колёсико совершало полный оборот, следующее сдвигалось на одну цифру (это похоже на принцип ручных счетов). Машина Паскаля умела только складывать и вычитать.


Конец XVII в. Механическое устройство (1694г.), позволяющее не только складывать числа, но и умножать их, было изобретено другим великим математиком и философом – Готфридом Вильгельмом Лейбницем. Cчётная машина обладала большими возможностями - выполняла все арифметические операции. Однако она была слишком громоздкой, а работала медленно.


Конец XV – начало XVI века Леонардо да Винчи () создал 13-разрядное суммирующее устройство с десятизубными кольцами. В 1969 году по чертежам Леонардо да Винчи американская фирма IBM по производству компьютеров в целях рекламы построила работоспособную машину.


Основу машины по описанию составляют стержни, на которые крепится два зубчатых колеса, большее с одной стороны стержня, а меньшее - с другой. Эти стержни должны были располагаться таким образом, чтобы меньшее колесо на одном стержне входило в зацепление с большим колесом на другом стержне. При этом меньшее колесо второго стержня сцеплялось с большим колесом третьего, и т.д. Десять оборотов первого колеса, по замыслу автора, должны были приводить к одному полному обороту второго, а десять оборотов второго - один оборот третьего и т.д. Вся система, состоящая из 13 стержней с зубчатыми колесами должна была приводиться в движение набором грузов.


Среди двухтомного собрания рукописей, известных как "Codex Madrid", посвященных механике, были обнаружены чертежи и описание такого устройства. Похожие рисунки также были найдены и в рукописях "Codex Atlanticus".





Машина Бэббиджа была чисто механической и требовала изготовления большого количества высокоточных деталей. Проект остался незавершённым, из-за недостатка финансовых средств. Уже после смерти Бэббиджа некоторые его идеи были использованы при создании первых электромеханических счётных машин. До середины XX в. на таких машинах делали сложные бухгалтерские расчёты и обрабатывали статистические данные. Английский математик и изобретатель Чарльз Бэббидж более 40 лет работал над проектом программируемой вычислительной машины, которую назвал аналитической. Бэббиджу принадлежала сама идея программирования вычислений, а также способ её реализации: ввод программ в машину с помощью перфокарт. Он впервые ввел память для промежуточных вычислений, он же предложил использовать в машине двоичную систему счисления.


Ноябрь 1991г. В ноябре 1991 года разностная машина Чарльза Бэббиджа впервые произвела вычисления: она была собрана сотрудниками Музея науки в Лондоне. Машина состоит из 4000 деталей (не считая механизма печати результата), выполнена из бронзы и стали, а весь составил около 3-х тонн. Ее габариты 2,1 х 3,4 х 0,5 м. Разностная машина, в которой предусмотрено использование десятичной системы счисления, а не двоичной, как в современных компьютерах, может вычислять разности 7-го порядка и работает при помощи рукоятки, являясь действующим экспонатом лондонского Музея науки.




Ада Августа Байрон, графиня Лавлейс Ада Августа Байрон родилась 10 декабря 1815 года (). Ее отец, прославленный английский поэт Джордж Гордон Байрон, посвятил дочери несколько трогательных строк в «Паломничестве Чайльд Гарольда». Ее мать, Аннабелль Минбэнк, за увлеченность точными науками называли «принцессой параллелограммов».






Первая универсальная ЭВМ 1946 г., США – ENIAC (Electronic Numerical Integrator and Computer) содержала электронных ламп и выполняла 5000 операций сложения в секунду. (Количество выполняемых операций в секунду - быстродействие).


Революция в мире компьютеров В январе 1944 года один из создателей ENIACа Джон Эккерт выдвинул идею хранимой программы. Суть этой революционной для компьютерной техники идеи в том, что «программы ЭВМ должны храниться в её внутренней памяти наравне с исходными данными и промежуточными результатами вычислений».




Личность в истории Американский математик и физик Джон фон Нейман () был родом из Будапешта. Своими необычными способностями этот человек стал выделяться очень рано: в шесть лет он разговаривал на древнегреческом языке, а в восемь освоил основы высшей математики. Работал он в Германии, но в начале 1930-х годов принял решение обосноваться в США. Продолжение на следующем слайде…


Личность в истории В 1945 году был опубликован доклад фон Неймана, в котором он наметил основные принципы построения и компоненты современного компьютера. Именно благодаря этому докладу, примерно через год, появилась статья, где автор, отвлекшись от электронных ламп и электрических схем, сумел обрисовать, так сказать, формальную организацию компьютера. Архитектурные принципы организации ЭВМ, заданные фон Нейманом, оставались неизменными вплоть до конца 1970-х годов.


Стоит иметь в виду, что все разработки отечественной вычислительной техники велись в период холодной войны и были закрыты грифом «секретно». Так что классическая архитектура компьютера, называемая сейчас архитектурой фон Неймана, была разработана С.А. Лебедевым, а также И.С. Бруком и Н.Я.Матюхиным совершенно самостоятельно, в том числе и друг от друга.


Первая отечественная ЭВМ 1951 г., СССР – МЭСМ (Малая Электронная Счетная Машина) содержала 6000 электронных ламп и выполняла 5000 операций сложения в секунду. Эта машина была разработана в Киеве группой ученых под руководством академика С.А.Лебедева. С.А.Лебедева. Одна из первых в мире и первая в Европе ЭВМ с хранимой в памяти программой.


БЭСМ В 1952 г. (по некоторым данным в 1953г.) в Москве – БЭСМ (Быстродействующая Электронная Счетная Машина) – самая быстродействующая ЭВМ в Европе. "БЭСМ" - семейство цифровых вычислительных машин общего назначения, ориентированных на решение сложных задач науки и техники. Разработана в Институте точной механики и вычислительной техники АН СССР.


Личность в истории Сергей Александрович Лебедев () родился 2 ноября 1902г. в Нижнем Новгороде. Выдающийся конструктор, академик, создатель первой отечественной электронной цифровой вычислительной машины, а также целого ряда других ЭВМ. С 1950г. – директор Института точной механики и вычислительной техники.


Первый мини-компьютер В 1965 году был выпущен массовый мини-компьютер PDP-8. До конца 60-х были разработаны модели PDP-10 и первого 16-разрядного мини-компьютера PDP-11/20. IBM начинает выпуск первого компьютера из семейства System 370. В 1970-м Intel выпустила первую доступную на рынке микросхему динамической памяти. Особенно важные результаты принёс 1969-й: в этом году сотрудник Intel Тед Хофф изобрёл микропроцессор. В 1970 году другой сотрудник Intel Фредерико Фагин начал работы по проектированию микропроцессора. А через год появился первый в мире четырёхразрядный микропроцессор Intel 4004, содержащий 2300 транзисторов на кристалле, его тактовая частота составляла 108 кГц. Ещё через год Intel разработала восьмиразрядный процессор 8008 для корпорации Computer Terminal Corp (тактовая частота 108 кГц, 3500 транзисторов, адресное пространство 16 Кбайт).


Первый микропроцессор 15 ноября 1971 года Маршиан Эдвард Хофф, работающий в фирме Intel, построил интегральную схему, аналогичную по своим функциям центральному процессору большой ЭВМ: появился первый микропроцессор, позже получивший название Intel 4004.Intel 4004.


Первый микропроцессор Intel 4004 для своего времени обладал фантастическими характеристиками: 2300 транзисторов в кристалле, 4-битная архитектура, 60 тыс. операций в секунду. Тактовая частота процессора – 108 КГц. Правда, сам термин «микропроцессор» стал применяться только с 1972 года.




Шаг в развитии… Начало 1980-х годов, Адам Осборн (г.г., Англия) – первый «успешный в коммерческом отношении» портативный компьютер.


Персональный компьютер IBM В 1981 году фирма IBM выставила на международный рынок персональный компьютер, который завоевал весь мир. В нём был воплощён принцип "открытой" архитектуры, который означает, что по мере улучшения характеристик отдельных устройств ЭВМ возможно лёгкая замена устаревших устройств на более совершенные. Оперативная память – 640 Кбайт Тип компьютера – IBM PC/XT Процессор – Intel 8086 Тактовая частота – 10 МГц



Личность в истории Джил Амдал (г.) – главный конструктор легендарных машин, таких как IBM 704, 709, 7090, и архитектор компьютерного семейства третьего поколения IBM 360.


Шаг к развитию третьего поколения ЭВМ В начале 1960-х годов наметилось общее направление развития элементной базы компьютеров, а именно – тенденция уменьшения размеров, массы, потребляемой мощности, повышения надёжности, что послужило стимулом к разработке и внедрению в производство компьютерных систем методов так называемой «интегральной технологии», позволивших перейти от отдельных диодов и транзисторов к интегральным схемам и от второго поколения ЭВМ к третьему.


Первые представители компьютеров III поколения Первыми представителями компьютеров третьего поколения обычно считают модели семейства IBM 360 (System 360), о появлении которого было объявлено руководством корпорации IBM в 1964 году. Машины данного семейства могли применяться во многих областях, они являлись универсальными компьютерами. Кроме того, различные модели были в значительной степени совместимыми, и здесь следовало уже говорить о мобильности программного обеспечения: программа, написанная для одной модели семейства IBM 360, должна была почти без изменений подходить для любой другой её модели. Продолжение на следующем слайде…


Первые представители компьютеров III поколения Менялось, конечно, время выполнения программы, могли возникнуть сложности из-за недостатка места в памяти, однако появилась надежда, что при переходе на новую машину уже имеющуюся программу не придётся полностью переделывать. В целом семейство IBM 360 достаточно сильно повлияло на весь ход развития компьютерной техники.






Личность в истории Питер Нортон (родился 14 ноября 1943г.) –журналист, компьютерный эксперт, автор целого ряда книг о ПК. Создатель набора сервисных программ Norton Utilities и оболочки Norton Commander (вышла на рынок в 1986г.). В 1982 году Питер Нортон случайно стер нужный файл с жесткого диска своего ПК. Восстановление файла оказалось сложным и кропотливым делом. Однако сложившаяся ситуация привела к тому, что Нортон создал программу, являющуюся прообразом сегодняшних утилит.


Mulaslator FORmula TRANslator В ноябре 1954 года компания IBM выпустила первый отчет, связанный с созданием языка Фортран (FORmula TRANslator – транслятор и переводчик формул). Руководителем группы разработчиков был Джон Бэкус. В те годы информатика развивалась достаточно стихийно, и трудно было что-то планировать, так что создатели Фортрана не подозревали, какое широкое признание получит созданный ими язык.


Личность в истории Билл ГЕЙТС (родился в 1955г.), американский предприниматель и изобретатель в области электронно-вычислительной техники, председатель и CEO ведущей компании в мире в области программного обеспечения Microsoft. В 1975 году, бросив Гарвардский университет, где он готовился стать правоведом, как его отец, Гейтс совместно со своим школьным товарищем Полом Алленом основал компанию Microsoft. Первой задачей новой фирмы стала адаптация языка Бейсик для использования в одном из первых коммерческих микрокомпьютеров «Альтаире» Эдварда Робертса. В 1980 году Microsoft разработала операционную систему MS-DOS (Microsoft Disk Operation System) для первого IBM PC, ставшую к середине 1980-х годов основной операционной системой на американском рынке микрокомпьютеров. Затем Гейтс приступил к разработке прикладных программ электронных таблиц Excel и текстового редактора Word, и к концу 1980-х Microsoft стала лидером и в этой области.


Личность в истории В 1986 году, выпустив акции компании в свободную продажу, Гейтс в возрасте 31 года стал миллиардером. В 1990 году компания представила оболочку Windows 3.0, в которой вербальные команды были заменены на пиктограммы, выбираемые с помощью «мыши», что значительно облегчило пользование компьютером. В начале 1990-х годов «Окна» продавались в количестве 1 миллиона копий в месяц. К концу 1990-х годов около 90% всех персональных компьютеров в мире были оснащены программным обеспечением Microsoft. О работоспособности Билла Гейтса, а также его уникальном качестве эффективно включиться в работу на любом ее этапе ходят легенды. Безусловно, Гейтс принадлежит к когорте самых незаурядных бизнесменов новой генерации. В 1995 году он выпустил книгу «Дорога в будущее», которая стала бестселлером. В 1997 возглавил список самых богатых людей в мире.



Слайд 1

И с т о р и я развития вычислительной техники

Слайд 2

ПРЕДМЕТЫ СЧЕТА ДРЕВНИХ ЛЮДЕЙ

До изобретения простых счет люди учились считать на пальцах рук

Использовали и посторонние предметы:узелки,камни, палочки, делали зарубки на дереве и костях

Слайд 3

С древних времен люди пытались создать средства для облегчения счета

ПРООБРАЗ НАШИХ СЕМИКОСТОЧКОВЫХ СЧЕТОВ

Слайд 4

НАШИ КОНТОРСКИЕ СЧЕТЫ – ЭТО РАЗНОВИДНОСТЬ ЗНАМЕНИТОГО АБАКА

конторские счеты абак

Слайд 5

Простейший абак - это доска с прорезанными в ней желобами. Как найти сумму двух чисел 134+223=357

1. Уложим в нижний желобок 4 камешка

2 В следующий 3 камешка

3. В третий желоб 1 камешек

4. Затем добавляем аналогично цифры второго слагаемого

5. Таким образом получился результат

Абак использовался в V -IV веке до нашей эры Их изготавливали из бронзы, камня слоновой кости, цветногостекла. Перевод с греческого слова абак означает ПЫЛЬ, т.к. изначально камешки раскладывали на ровную доску, покрытую пылью, чтобы камешки не скатывались Абаки использовались в Древней Греции и Риме, а чуть позже и в Западной Европе

Слайд 6

Счеты имели разные народы и поэтому имели свои особенности в расположении косточек. Так в Японии А так в Китае

суан-пань

Слайд 7

Дж.Непер изобрел логарифмы

Эдмунд Гунтер изобрел логарифмическую линейку с неподвижными шкалами

Логарифмическая линейка

Слайд 8

В 1623 г. В. Шикард изобрел машину, способную суммировать, вычитать, делить и перемножать числа. Это была первая механическая машина.

Первые механические приспособления для счета

Знаменитый физик, математик Блез Паскаль в 1642 году изобрел механическое устройство арифмометр

Слайд 9

В 1671 году Готфрид Вильгельм Лейбниц создал свою счетную машину, известную как “счетное колесо“ Лейбница. Он писал о машинах будущего, что они будут пригодны для работы с символами и формулами. Тогда эта идея казалась абсурдной.

Г. ЛЕЙБНИЦ

Слайд 10

В 1830 году был представлен проект аналитической машины Бэббиджа, которая явилась первым автоматическим программируемым вычислительным устройством.

ЧАРЛЬЗ БЕББИДЖ

Слайд 11

Ж. ЖАККАРД – ПЕРВЫЙ ИЗОБРЕТАТЕЛЬ ПЕРФОКАРТ

Станок для подготовки перфокарт

Общий вид перфокарт

Слайд 12

Графиня Ада Августа Лавлейс – была программистом первой аналитической машины.

ПЕРВАЯ ПРОГРАММИСТКА

Ее именем назван, разработанный в 1979 году, алгоритмический язык ADA

Слайд 13

В начале 19 века для расчетов применялись механические арифмометры

Слайд 14

1925 г. - на Сущевском им. Ф. Э. Дзержинского механическом заводе в Москве налажено производство арифмометров под маркой "Оригинал-Однер", в дальнейшем (с 1931 г.) они стали известны как арифмометры “Феликс”

Арифмометр имеет в верхней части (коробка) девять прорезов, в которых передвигаются рычажки. Сбоку прорезов нанесены цифры; передвигая вдоль каждого прореза рычажок, можно “поставить на рычагах” любое девятизначное число. Внизу под рычагами находятся два ряда окошечек (подвижная каретка): одни, более крупные, числом 13 справа. другие, меньшие, слева, числом 8. Ряд окошечек справа образует результирующий счетчик, а ряд слева - счетчик оборотов. Номер окошечка на счетчике указывает место единиц какого-либо разряда числа, стоящего на этом счетчике.Справа и слева каретки видны барашки (ласточки), служащие для сбрасывания цифр, появляющихся на этих счетчиках. Повертывая барашки до тех пор, пока они не щелкнут, мы убираем все цифры на счетчиках, оставляя нули.На коробке машины справа от прорезов имеются две стрелки, на концах которых стоят плюс (+) и минус (-). С правой стороны машины имеется ручка, которую можно повертывать в направлении плюс (по часовой стрелке) и в направлении минус (против часовой стрелки).Пусть на результирующем счетчике и на счетчике оборотов стоят нули. Поставим на рычагах какое-нибудь число, например 231 705 896, и повернем ручку в направлении плюс. После одного оборота на результирующем счетчике появится тоже число 231705 896 .Сложение и вычитание. Чтобы сложить несколько чисел, надо поставить эти числа одно за другим на рычагах и после каждой установки 1 раз повернуть ручку в направлении плюс. На результирующем счетчике появится сумма всех чисел.При вращении ручки в обратную сторону на результирующем счетчике появится разность между числом, стоявшим в нем до начала поворота, и числом, поставленным на рычагах. Умножение. Каретка арифмометра может передвигаться вдоль машины вправо и влево, и под прорезом для единиц можно поставить различные окошечки результирующего счетчика.

Слайд 15

В 1935 г. в СССР был выпущен клавишный полуавтоматический арифмометр КСМ-1 (клавишная счетная машина). Эта машина имела два привода: электрический (со скоростью 300 оборотов в минуту) и ручной (на случай отсутствия питания).

Клавиатура машины состоит из 8 вертикальных рядов по 10 клавишей в каждом, т. е. можно набрать 8-значные числа. Для удобства набора группы разрядов клавиатуры окрашены в разные цвета. Имеются клавиши гашения. Если цифра набрана ошибочно, то для ее замены достаточно нажать на нужную цифру в том же ряду и тогда неверно набранная цифра погасится автоматически. В подвижной каретке находится 16-разрядный счетчик результатов и 8-разрядный счетчик оборотов, имеющие устройства для передачи десятков из одного разряда в другой. Для гашения этих счетчиков служит ручка. Имеются подвижные запятые (для удобства считывания). Звонок сигнализирует о переполнении счетчика результатов. В послевоенные годы были выпущены полуавтоматы КСМ-2 (с незначительными отличиями по конструкции от КСМ-1, но с более удобным расположением рабочих деталей)

Слайд 16

В 40-ых г.г 19 столетия произошел коренной переворот в развитии вычислительной техники. С 1943 по1946 год в США была построена первая полностью электронная цифровая машина.

ПЕРЕВОРОТ

Слайд 17

Во времена Др. Рима был изобретен первый счетный инструмент - Абак В XVI в. в России были изобретены счеты. 1642г. – Блез Паскаль изобрел Колесо «Паскаля», механически выполняющее сложение и вычитание чисел. 1694г. – Готфрид Лейбниц сконструировал арифмометр, производящий четыре действия. 1888г. – Герман Холлерит сконструировал первую счетную машину.

Слайд 2

Вычисления в доэлектронную эпоху ЭВМ первого поколения ЭВМ второго поколения ЭВМ третьего поколения Персональные компьютеры Современные супер-ЭВМ

Слайд 3

Вычисления в доэлектронную эпоху

Потребность счета предметов у человека возникла еще в доисторические времена. Древнейший метод счета предметов заключался в сопоставлении предметов некоторой группы (например, животных) с предметами другой группы, играющей роль счетного эталона. У большинства народов первым таким эталоном были пальцы (счет на пальцах). Расширяющиеся потребности в счете заставили людей употреблять другие счетные эталоны (зарубки на палочке, узлы на веревке и т. д.).

Слайд 4

Каждый школьник хорошо знаком со счетными палочками, которые использовались в качестве счетного эталона в первом классе. В древнем мире при счете больших количеств предметов для обозначения определенного их количества (у большинства народов - десяти) стали применять новый знак, например зарубку на другой палочке. Первым вычислительным устройством, в котором стал применяться этот метод, стал абак.

Слайд 5

Древнегреческий абак представлял собой посыпанную морским песком дощечку. На песке проводились бороздки, на которых камешками обозначались числа. Одна бороздка соответствовала единицам, другая - десяткам и т. д. Если в какой-то бороздке при счете набиралось более 10 камешков, их снимали и добавляли один камешек в следующий разряд. Римляне усовершенствовали абак, перейдя от песка и камешков к мраморным доскам с выточенными желобками и мраморными шариками

Слайд 6

По мере усложнения хозяйственной деятельности и социальных отношений (денежных расчетов, задач измерений расстояний, времени, площадей и т. д.) возникла потребность в арифметических вычислениях. Для выполнения простейших арифметических операций (сложения и вычитания) стали использовать абак, а по прошествии веков - счеты.

Слайд 7

Развитие науки и техники требовало проведения все более сложных математических расчетов, и в XIX веке были изобретены механические счетные машины - арифмометры. Арифмометры могли не только складывать, вычитать, умножать и делить числа, но и запоминать промежуточные результаты, печатать результаты вычислений и т. д.

Слайд 8

В середине XIX века английский математик Чарльз Бэббидж выдвинул идею создания программно управляемой счетной машины, имеющей арифметическое устройство, устройство управления, а также устройства ввода и печати.

Слайд 9

Аналитическую машину Бэббиджа (прообраз современных компьютеров) по сохранившимся описаниям и чертежам построили энтузиасты из Лондонского музея науки. Аналитическая машина состоит из четырех тысяч стальных деталей и весит три тонны.

Слайд 10

Вычисления производились Аналитической машиной в соответствии с инструкциями (программами), которые разработала леди Ада Лавлейс (дочь английского поэта Джорджа Байрона). Графиню Лавлейс считают первым программистом, и в ее честь назван язык программирования АДА.

Слайд 11

Программы записывались на перфокарты путем пробития в определенном порядке отверстий в плотных бумажных карточках. Затем перфокарты помещались в Аналитическую машину, которая считывала расположение отверстий и выполняла вычислительные операции в соответствии с заданной программой.

Слайд 12

Развитие электронно-вычислительной техникиЭВМ первого поколения

В 40-е годы XX века начались работы по созданию первых электронно-вычислительных машин, в которых на смену механическим деталям пришли электронные лампы. ЭВМ первого поколения требовали для своего размещения больших залов, так как в них использовались десятки тысяч электронных ламп. Такие ЭВМ создавались в единичных экземплярах, стоили очень дорого и устанавливались в крупнейших научно-исследовательских центрах.

Слайд 13

ЭВМ первого поколения

В 1945 году в США был построен ENIAC (Electronic Numerical Integrator and Computer - электронный числовой интегратор и калькулятор), а в 1950 году в СССР была создана МЭСМ (Малая Электронная Счетная Машина)

Слайд 14

ЭВМ первого поколения могли выполнять вычисления со скоростью несколько тысяч операций в секунду, последовательность выполнения которых задавалась программами. Программы писались на машинном языке, алфавит которого состоял из двух знаков: 1 и 0. Программы вводились в ЭВМ с помощью перфокарт или перфолент, причем наличиеотверстия на перфокарте соответствовало знаку 1, а его отсутствие – знаку 0. Результаты вычислений выводились с помощью печатающих устройств в форме длинных последовательностей нулей и единиц. Писать программы на машинном языке и расшифровывать результаты вычислений могли только квалифицированные программисты, понимавшие язык первых ЭВМ.

Слайд 15

ЭВМ второго поколения

В 60-е годы XX века были созданы ЭВМ второго поколения, основанные на новой элементной базе - транзисторах, которые имеют в десятки и сотни раз меньшие размеры и массу, более высокую надежность и потребляет значительно меньшую электрическую мощность, чем электронные лампы. Такие ЭВМ производились малыми сериями и устанавливались в крупных научно-исследовательских центрах и ведущих высших учебных заведениях.

Слайд 16

В СССР в 1967 году вступила в строй наиболее мощная в Европе ЭВМ второго поколения БЭСМ-6 (Большая Электронная Счетная Машина), которая могла выполнять 1 миллион операций в секунду.

Слайд 17

В БЭСМ-6 использовалось 260 тысяч транзисторов, устройства внешней памяти на магнитных лентах для хранения программ и данных, а также алфавитно-цифровые печатающие устройства для вывода результатов вычислений. Работа программистов по разработке программ существенно упростилась, так как стала проводиться с использованием языков программирования высокого уровня (Алгол, Бейсик и др.).

Слайд 18

ЭВМ третьего поколения

Начиная с 70-х годов прошлого века, в качестве элементной базы ЭВМ третьего поколения стали использовать интегральные схемы. В интегральной схеме (маленькой полупроводниковой пластине) могут быть плотно упакованы тысячи транзисторов, каждый из которых имеет размеры, сравнимые с толщиной человеческого волоса.

Слайд 19

ЭВМ на базе интегральных схем стали гораздо более компактными, быстродействующими и дешевыми. Такие мини-ЭВМ производились большими сериями и были доступными для большинства научных институтов и высших учебных заведений.

Слайд 20

Персональные компьютеры

Развитие высоких технологий привело к созданию больших интегральных схем - БИС, включающих десятки тысяч транзисторов. Это позволило приступить к выпуску компактных персональных компьютеров, доступных для массового пользователя.

Слайд 21

Первым персональным компьютером был АррleII («дедушка» современных компьютеров Маcintosh), созданный в 1977 году. В 1982 году фирма IBM приступила к изготовлению персональных компьютеров IВМ РС («дедушек» современных IВМ-совместимых компьютеров).

Слайд 22

Современные персональные компьютеры компактны и обладают в тысячи раз большим быстродействием по сравнению с первыми персональными компьютерами (могут выполнять несколько миллиардов операций в секунду). Ежегодно в мире производится почти 200 миллионов компьютеров, доступных по цене для массового потребителя. Персональные компьютеры могут быть различного конструктивного исполнения: настольные, портативные (ноутбуки) и карманные (наладонники).

Слайд 24

Используемая литература и ссылки изображений

Информатика и ИКТ. Базовый уровень: учебник для 11 класса/ Н.Д. Угринович. – 3-е изд. – М. : БИНОМ. Лаборатория знаний, 2009. http://www.radikal.ru/users/al-tam/istorija-razvitija-vychtehniki

Посмотреть все слайды

Слайд 1

История развития компьютерной техники

Слайд 2

Историю развития вычислительной техники принято делить на предысторию и 4 поколения развития ЭВМ:

Предыстория; - Первое поколение; - Второе поколение; - Третье поколение; - Четвёртое поколение;

Слайд 3

Предыстория. В1941 году немецкий инженер Цузе построил небольшой компьютер на основе электромеханических реле, но из-за войны его труды не были опубликованы. В 1943 году в США на одном из предприятий фирмы IBM Эйкен создал более мощный компьютер "Марк-1", который использовался для военных расчетов. Но электромеханические реле работали медленно и ненадежно. Первое поколение ЭВМ (1946 - середина 50-х годов) Под поколением ЭВМ понимают все типы и модели ЭВМ, разработанные различными конструкторскими коллективами, но построенными на одних и тех же научных и технических принципах. Появление электронно-вакуумной лампы привело к созданию первой вычислительной машины. В 1946 году в США появилась вычислительная машина для решения задач под названием ЭНИАК (ENIAC -Electronic Numerical Integrator and Calculator - "электронный численный интегратор и калькулятор"). Этот компьютер работал в тысячу раз быстрее, чем "Марк-1". Но большую часть времени он простаивал, т.к. для выполнения программы надо было несколько часов нужным образом подсоединять провода. Совокупность элементов, из которых состоит компьютер, называется элементной базой. Элементной базой компьютеров I поколения служат электронно-вакуумные лампы, резисторы и конденсаторы. Элементы соединялись проводами с помощью навесного монтажа. ЭВМ представляла собой множество громоздких шкафов и занимала специальный машинный зал, весила сотни тонн и расхо-довала сотни киловатт электроэнергии. ЭНИАК имел 20 тыс. электронных ламп. За 1 сек. Машина выполняла 300 операций умножения или 5000 операций сложения многоразрядных чисел. В 1945 году известный американский математик Джон фон Нейман представил широкой научной общественности доклад, в котором сумел обрисовать формальную логическую организацию компьютера, отвлекшись от схем и радиоламп.

Слайд 4

История развития компьютерной техники. Классические принципы функциональной организации и работы компьютера:

1. Наличие основных устройств: устройство управления (УУ), арифметико-логическое (АЛУ), запоми-нающее устройство(ОЗУ), устройства ввода-вывода; 2. Хранение данных и команд в памяти; 3. Принцип программного управления; 4. Последовательное выполнение операций; 5. Двоичное кодирование информации (первый компьютер "Марк-1" производил вычисления в десятичной системе счисления, но такую кодировку трудно реализовать технически, и позднее от нее отказались); 6. Использование для большей надежности электронных элементов и электрических схем (вместо элек-тромеханических реле).

Слайд 5

Первое поколение ЭВМ

Первая отечественная ЭВМ была создана в 1951 году под руководством академика С.А. Лебедева, и называлась она МЭСМ (малая электронная счетная машина). Позднее была создана БЭСМ-2 (большая электронная счетная машина). Самой мощной ЭВМ первого поколения в Европе была советская ЭВМ М-20 с быстродействием 20 тыс. оп/сек., объем оперативной памяти - 4000 машинных слов. В среднем быстродействие ЭВМ первого поколения 10-20 тыс. оп/сек. Эксплуатация ЭВМ первого поколения слишком сложна из-за частого выхода из строя: электронные лампы часто перегорали и заменять их нужно было вручную. Обслуживанием такой ЭВМ занимался целый штат инженеров. Программы для таких машин писали в машинных кодах, надо было знать все команды машины и их двоичное представление. Кроме того стоили такие компьютеры миллионы долларов.

Слайд 6

Второе поколение ЭВМ

Изобретение транзистора в 1948 г. позволило изменить элементную базу ЭВМ на полупроводниковые элементы (транзисторы и диоды), а также более совершенные резисторы и конденсаторы. Один транзистор заменял 40 электронных ламп, работал быстрее, был дешевле и надежнее. Измени-лась технология соединения элементной базы: появились первые печатные платы - пластины из изоляционного материала, на которых размещались транзисторы, диоды резисторы и конденсаторы. Печатные платы соединялись с помощью навесного монтажа. Сократилось потребление электроэнергии, и уменьшились в сотни раз размеры. Производительность таких ЭВМ до 1 млн. оп./сек. При выходе из строя нескольких элементов производилась замена всей платы, а не каждого элемента в отдельности. После появления транзисторов самой трудоемкой операцией при производстве компьютеров стало соединение и спайка транзисторов для создания электронных схем. Появление алгоритмических языков облегчило процесс составления программ. Введен принцип разделения времени - различные устройства ЭВМ стали работать одновременно. В 1965 г. фирма Digital Equipment выпустила первый мини-компьютер PDP-8 размером с холодильник и стоимостью всего 20 тысяч долларов.

Слайд 7

Третье поколение ЭВМ

В 1958 году Джон Килби впервые создал опытную интегральную схему или чип. Интегральная схема выполняла те же функции, что и электронная в ЭВМ второго поколения. Она представляла собой пластину кремния, на которой были размещены транзисторы и все соединения между ними. Элементная база - интегральные схемы. Производительность: сотни тысяч - миллионы операций в секунду. Первой ЭВМ, выполненной на интегральных схемах, была IBM-360 в 1968 году фирмы IBM, которая положила начало целой серии (чем больше номер, тем больше возможности компьютера). В 1970 году фирма Intel начала продавать интегральные схемы памяти. В дальнейшем, количество транзисторов на единицу площади интегральной схемы увеличивалось ежегодно примерно вдвое. Это обеспечивало постоянное уменьшение стоимости и рост быстродействия компьютера. Увеличился объем памяти. Появились дисплеи и графопостроители, происходит дальнейшее развитие разнообразных языков программирования. В нашей стране выпускались два семейства ЭВМ: большие (например, ЕС-1022, ЕС-1035) и малые (например, СМ-2, СМ-3). В то время вычислительный центр оснащался одной - двумя моделями ЕС-ЭВМ и дисплейным классом, где каждый программист мог подсоединиться к ЭВМ в режиме разделения времени.

Слайд 8

Чётвёртое поколение ЭВМ

В 1970 году Маршиан Эдвард Хофф из фирмы Intel сконструировал интегральную схему, аналогичную по своим функциям центральному процессору большого компьютера. Так появился первый микропроцессор Intel-4004, который был выпущен в продажу в 1971 г. Этот микропроцессор размером менее 3 см был производительнее гигантской машины. На одном кристалле кремния удалось разместить 2250 транзисторов. Правда работал он гораздо мед-леннее и мог обрабатывать одновременно только 4 бита информации (вместо 16-32 бит у больших компьютеров), но и стоил он в десятки тысяч раз дешевле (около 500 долларов). Вскоре начался быстрый рост производительности микропроцессоров. Сначала микропроцессоры использовались в различных вычислительных устройствах (например, в калькуляторах). В 1974 году несколько фирм объявили о создании на основе микропроцессора Intel-8008 персонального компьютера, т.е. устройства, рассчитанного на одного пользователя.

Слайд 9

Широкая продажа на рынке персональных компьютеров (ПК) связана с именами молодых американцев С. Джобса и В. Возняка, основателей фирмы Apple Computer, которая с 1977 г. наладила выпуск персональных компьютеров "Apple". Росту объема продаж способствовали многочисленные программы, разработанные для деловых применений (редактирование текстов, электронные таблицы для бухгалтерских расчетов).

Слайд 10

В конце 70-х годов распространение ПК привело к снижению спроса на большие компьютеры. Это обеспокоило руководство фирмы IBM - ведущей компании по производству больших компьютеров, и оно решило попробовать в качестве эксперимента свои силы на рынке ПК. Чтобы не тратить на этот эксперимент много средств, подразделе-нию, ответственному за этот проект было разрешено не конструировать ПК с нуля, а использовать блоки, изготовлен-ные другими фирмами. Так, в качестве основного микропроцессора был выбран новейший в то время 16-разрядный микропроцессор Intel-8088. Программное обеспечение было поручено разработать небольшой фирме Microsoft. В августе 1981 г. новый компьютер IBM PC был готов и приобрел большую популярность среди пользователей. Фирма IBM не сделала свой компьютер единым неразъемным устройством и не стала защищать его конструкцию патентами. Наоборот, она собрала компьютер из независимо изготовленных частей и не стала держать способы соединения этих частей в секрете; конструкции IBM PC были доступны всем желающим. Это позволило другим фирмам разрабаты-вать как аппаратное, так и программное обеспечение. Очень скоро эти фирмы перестали довольствоваться ролью производителей комплектующих для IBM PC и начали сами собирать ПК, совместимые с IBM PC. Конкуренция между производителями привела к удешевлению компьютеров. Поскольку этим фирмам не требовалось нести огромные издержки на исследования, они могли продавать свои компьютеры намного дешевле аналогичных компьютеров фирмы IBM. Совместимые с IBM PC компьютеры называли "клонами" (двойниками). Общее свойство семейства IBM PC и совместимых с ним компьютеров - это совместимость программного обеспечения и принцип открытой архитектуры, т.е. возможность дополнения и замены имеющихся аппаратных средств на более современные без замены всего компьютера. Одна из самых важных идей компьютеров четвертого поколения: для обработки информации используется одновременно несколько процессоров (мультипроцессорная обработка).

Слайд 11

Сервер - мощный компьютер в вычислительных сетях, который обеспечивает обслуживание подключенных к нему компьютеров и выход в другие сети. Суперкомпьютеры появились еще в 70-е годы. В отличие от компьютеров неймановской структуры в них используется многопроцессорный способ обработки. При таком способе решаемая задача разбивается на несколько частей, каждая из которых решается параллельно на своем процессоре. Это резко увеличивает производительность. Быстродействие их миллиарды операций в секунду. Но стоят такие компьютеры миллионы долларов. Персональные компьютеры (ПК) используются повсеместно, имеют доступную цену. Для них разработано большое кол-во программных средств для различных областей применения, которые помогают человеку обрабатывать информацию. Сейчас ПК стал мультимедийным, т.е. обрабатывает не только числовую и текстовую информацию, но эффективно работает со звуком и изображением. Портативные компьютеры (латинское слово "porto " означает "ношу") - переносные компьютеры. Самый распространенный из них ноутбук ("note book") - блокнотный персональный компьютер. Промышленные компьютеры предназначены для использования в производственных условиях (например, для управления станками, самолетами и поездами). К ним предъявляются повышенные требования по надежности безотказной работы, устойчивости к перепадам температуры, к вибрации и т.п. Поэтому обычные персональные компьютеры не могут использоваться как промышленные.

Слайд 12

Спасибо за внимание!!!

Тема урока: История развития вычислительной техники Цели урока:

  • Познакомиться с основными этапами развития вычислительной техники.
  • Изучить историю развития отечественной и зарубежной вычислительной техники.
Основные этапы развития вычислительной техники
  • Вычисления в доэлектронную эпоху.
  • 2. ЭВМ первого поколения.
  • 3. ЭВМ второго поколения.
  • 4. ЭВМ третьего поколения.
  • 5. Персональные компьютеры.
  • 6. Современные супер-ЭВМ.
  • Потребность счета предметов у человека возникла еще в доисторические времена. Древнейший метод счета предметов заключался в сопоставлении предметов некоторой группы (например, животных) с пердметами другой группы, играющей роль счетного эталона. У большинства народов первым таким эталоном были пальцы (счет на пальцах).
  • Расширяющиеся потребности в счете заставили людей употреблять другие счетные эталоны (зарубки на палочке, узлы на веревке и т.д.).
Вычисления в доэлектронную эпоху
  • Каждый школьник хорошо знаком со счетными палочками, которые использовались в качестве счетного эталона в первом классе.
  • В древнем мире при счете больших количеств предметов для обозначения определенного их количества (у большинства народов - десяти) стали применять новый знак, например зарубку на другой палочке. Первым вычислительным устройством, в котором стал применяться этот метод, стал абак.
Вычисления в доэлектронную эпоху
  • Древнегреческий абак представлял собой посыпанную морским песком дощечку. На песке проводились бороздки, на которых камешками обозначались числа. Одна бороздка соответствовала единицам, другая - десяткам и т. д. Если в какой-то бороздке при счете набиралось более 10 камешков, их снимали и добавляли один камешек в следующий разряд. Римляне усовершенствовали абак, перейдя от песка и камешков к мраморным доскам с выточенными желобками и мраморными шариками.
  • Абак
Вычисления в доэлектронную эпоху
  • По мере усложнения хозяйственной деятельности и социальных отношений (денежных расчетов, задач измерений расстояний, времени, площадей и т. д.) возникла потребность в арифметических вычислениях.
  • Для выполнения простейших арифметических операций (сложения и вычитания) стали использовать абак, а по прошествии веков - счеты.
  • В России счеты появились в XVI веке
Вычисления в доэлектронную эпоху
  • Развитие науки и техники требовало проведения все более сложных математических расчетов, и в XIX веке были изобретены механические счетные машины - арифмометры. Арифмометры могли не только складывать, вычитать, умножать и делить числа, но и запоминать промежуточные результаты, печатать результаты вычислений и т. д.
  • Арифмометр
Вычисления в доэлектронную эпоху
  • В середине XIX века английский математик Чарльз Бэббидж выдвинул идею создания программно управляемой счетной машины, имеющей арифметическое устройство, устройство управления, а также устройства ввода и печати.
  • Чарльз Бэббидж
  • 26.12.1791 - 18.10.1871
Вычисления в доэлектронную эпоху
  • Аналитическую машину Бэббиджа (прообраз современных компьютеров) по сохранившимся описаниям и чертежам построили энтузиасты из Лондонского музея науки. Аналитическая машина состоит из четырех тысяч стальных деталей и весит три тонны.
  • Аналитическая машина Бэббиджа
Вычисления в доэлектронную эпоху
  • Вычисления производились Аналитической машиной в соответствии с инструкциями (программами), которые разработала леди Ада Лавлейс (дочь английского поэта Джорджа Байрона).
  • Графиню Лавлейс считают первым программистом, и в ее честь назван язык программирования АДА.
  • Ада Лавлейс
  • 10.12 1815 - 27.11.1852
Вычисления в доэлектронную эпоху
  • Программы записывались на перфокарты путем пробития в определенном порядке отверстий в плотных бумажных карточках. Затем перфокарты помещались в Аналитическую машину, которая считывала расположение отверстий и выполняла вычислительные операции в соответствии с заданной программой.
ЭВМ первого поколения
  • В 40-е годы XX века начались работы по созданию первых электронно-вычислительных машин, в которых на смену механическим деталям пришли электронные лампы. ЭВМ первого поколения требовали для своего размещения больших залов, так как в них использовались десятки тысяч электронных ламп. Такие ЭВМ создавались в единичных экземплярах, стоили очень дорого и устанавливались в крупнейших научно-исследовательских центрах.
ЭВМ первого поколения
  • В 1945 году в США был построен ENIAC (Electronic Numerical Integrator and Computer - электронный числовой интегратор и калькулятор), а в 1950 году в СССР была создана МЭСМ (Малая Электронная Счетная Машина)
  • ENIAC
  • МЭСМ
ЭВМ первого поколения
  • ЭВМ первого поколения могли выполнять вычисления со скоростью несколько тысяч операций в секунду, последовательность выполнения которых задавалась программами. Программы писались на машинном языке, алфавит которого состоял из двух знаков: 1 и 0. Программы вводились в ЭВМ с помощью перфокарт или перфолент, причем наличие отверстия на перфокарте соответствовало знаку 1, а его отсутствие – знаку 0.
  • Результаты вычислений выводились с помощью печатающих устройств в форме длинных последовательностей нулей и единиц. Писать программы на машинном языке и расшифровывать результаты вычислений могли только квалифицированные программисты, понимавшие язык первых ЭВМ.
ЭВМ второго поколения
  • В 60-е годы XX века были созданы ЭВМ второго поколения, основанные на новой элементной базе - транзисторах, которые имеют в десятки и сотни раз меньшие размеры и массу, более высокую надежность и потребляет значительно меньшую электрическую мощность, чем электронные лампы. Такие ЭВМ производились малыми сериями и устанавливались в крупных научно-исследовательских центрах и ведущих высших учебных заведениях.
ЭВМ второго поколения
  • В СССР в 1967 году вступила в строй наиболее мощная в Европе ЭВМ второго поколения БЭСМ-6 (Большая Электронная Счетная Машина), которая могла выполнять 1 миллион операций в секунду.
  • В БЭСМ-6 использовалось 260 тысяч транзисторов, устройства внешней памяти на магнитных лентах, а также алфавитно-цифровые печатающие устройства для вывода результатов вычислений.
  • Работа программистов по разработке программ существенно упростилась, так как стала проводиться с использованием языков программирования высокого уровня (Алгол, Бейсик и др.).
  • БЭСМ - 6
ЭВМ третьего поколения
  • Начиная с 70-х годов прошлого века, в качестве элементной базы ЭВМ третьего поколения стали использовать интегральные схемы. В интегральной схеме (маленькой полупроводниковой пластине) могут быть плотно упакованы тысячи транзисторов, каждый из которых имеет размеры, сравнимые с толщиной человеческого волоса.
ЭВМ третьего поколения
  • ЭВМ на базе интегральных схем стали гораздо более компактными, быстродействующими и дешевыми. Такие мини-ЭВМ производились большими сериями и были доступными для большинства научных институтов и высших учебных заведений.
  • Первая мини-ЭВМ
Персональные компьютеры
  • Развитие высоких технологий привело к созданию больших интегральных схем - БИС, включающих десятки тысяч транзисторов. Это позволило приступить к выпуску компактных персональных компьютеров, доступных для массового пользователя.
  • Первым персональным компьютером был Аррle II («дедушка» современных компьютеров Маcintosh), созданный в 1977 году. В 1982 году фирма IBM приступила к изготовлению персональных компьютеров IВМ РС («дедушек» современных IВМ-совместимых компьютеров).
  • Apple II
Персональные компьютеры
  • Современные персональные компьютеры компактны и обладают в тысячи раз большим быстродействием по сравнению с первыми персональными компьютерами (могут выполнять несколько миллиардов операций в секунду). Ежегодно в мире производится почти 200 миллионов компьютеров, доступных по цене для массового потребителя.
  • Персональные компьютеры могут быть различного конструктивного исполнения: настольные, портативные (ноутбуки) и карманные (наладонники).
  • Современные ПК
Современные супер-ЭВМ
  • Это многопроцессорные комплексы, которые позволяют добиться очень высокой производительности и могут применяться для расчетов в реальном времени в метеорологии, военном деле, науке и т. д.
tctnanotec.ru - Портал о дизайне и ремонте ванной комнаты