Литература по ветровой энергетике. Альтернативные источники энергии ветер Глава II. Основные понятия экспериментальной аэродинамики

СОДЕРЖАНИЕ

Введение 3
I Ветер
1 Происхождение ветра 4
2 Скорость ветра и как ее измерить 5
3 Влияние препятствий на скорость и направление ветра 9
4 Повторяемость ветра 10
5 Энергия ветра 10

II Ветродвигатели
6 Системы ветродвигателей 13
7 Принцип работы крыльчатых ветродвигателей 15
8 Установ на ветер и регулирование ветродвигателей 20
9 Как определить размеры крыльев на заданную мощность 21
10 Как сделать крылья к ветроэлектрическому агрегату 29

III Как сделать самому ветроэлектрический агрегат
11 Конструкции существующих ветроэлектрических агрегатов 34
12 Как сделать самому простейший ветроэлектрический агрегат на 100 вт без помощи завода 44

IV Электрооборудование ветроэлектрических агрегатов и уход за ним
13 Электрооборудование 50
14 Краткие сведения по эксплоатации и уходу за ветроэлектрическими агрегатами 54
15 Уход за коммутационной аппаратурой 61
16 Эксплоатационные показатели ветроэлектрических агрегатов 62

Маломощные ветроэлектрические установки представляют большой интерес для районов, еще недостаточно электрифицированных или удаленных от промышленных центров.
Ветроэлектроустановки малой мощности до 100 вт настолько просты, что их можно легко изготовлять своими силами. Эксплоатация таких агрегатов также проста и не требует затраты средств на горючее. Стоимость киловаттчаса ветроэлектрических агрегатов в районах со среднегодовыми скоростями ветра выше 5 м-сек оказывается ниже тарифа местных электростанций.
Надо сказать, что ветровой режим района является основным условием, определяющим экономическую целесообразность эксплоатации ветроэлектрических установок. Поэтому, прежде чем приступить к рассмотрению конструкций ветроэлектрических агрегатов и способа их изготовления, необходимо познакомиться с основными характеристиками ветра как источника энергии. Кроме того, чтобы понять особенно сти ветродвигателя, преобразующего энергию ветра в механическую работу, необходимо также познакомиться хотя бы с элементарными основами аэродинамики ветродвигателей. Это поможет правильно построить крылья ветроколеса, которые являются главной частью ветроэлектрического агрегата.

1. ВЕТЕР
1. Происхождение ветра. Ветром называют движение окружающего земной шар воздуха. Мы настолько свыклись с этим явлением, что у нас и не появляется вопроса: как и почему возникает ветер? Однако, для более ясного представления об этой силе природы следует знать и причины, ее порождающие.
Если мы откроем немного дверь теплой комнаты, находящейся рядом с холодным помещением, то сейчас же наши ноги ощутят холод, между тем как на уровне лица этого ощущения не будет. Это происходит оттого, что теплый воздух, будучи легче, чем холодный, стремится занимать верхнюю часть помещения, а холодный - нижнюю. Воздух из холодного помещения устремляется в теплую комнату и как более тяжелый распространяется понизу, вытесняя из нее теплый воздух, который в свою очередь под действием холодного вытесняется из теплой комнаты через верхнюю часть открытой двери. В этом можно легко убедиться, поднося зажженную свечу к щели приоткрытой двери: сначала внизу, потом в средине и, наконец, вверху. Внизу пламя свечи наклонится внутрь теплой комнаты, в средине будет стоять вертикально, а вверху направлено в сторону холодною помещения. Отклонение пламени свечи указывает направление движения воздуха между помещениями с разными температурами.
Аналогичное явление происходит с воздухом земной атмосферы. Солнце нагревает землю не везде одинаково. На экваторе солнечные лучи падают на землю вертикально и нагревают ее поверхность наиболее сильно, ближе к полюсам лучи солнца падают наклонно и греют слабее, а на полюсах солнце греет землю совсем слабо. Соответственно нагреву поверхности земли нагревается и воздух, расположенный над ней. Таким образом, воздух на поверхности земли имеет разные температуры, а следовательно, разные давления и вес. Атмосферный воздух устремляется из холодных пространств в теплые, т. е. от полюсов к экватору, вытесняет нагретый, который направляется в верхние слои атмосферы. На высоте нескольких километров нагретый воздух, разделившись на два потока, направляется к полюсам. По мере приближения « ним он охлаждается и опускается ближе к поверхности земли. На полюсах он совершенно охлаждается и направляется обратно к экватору. Такое явление происходит постоянно, создавая циркуляцию атмосферы над поверхностью земли.
Постоянное движение воздуха с юга и севера к экватору называется пассатом. Вследствие вращения земли с запада на восток пассат движется к экватору с севера - в северо-восточном направлении, а с юга - в юго-восточном.
В северной и южной частях земного шара наблюдаются местные ветры с переменным направлением. Эти ветры вызываются тем, что по мере удаления от тропиков к полюсам чередование времен года - зимы, весны, лета и осени, а также присутствие морей, гор и т. п. делают температуру атмосферного воздуха крайне непостоянной, а следовательно, непостоянным направление и скорость движения воздушных потоков.
2. Скорость ветра и как ее измерить. Основной величиной, характеризующей силу ветра, является его скорость. Величина скорости ветра определяется расстоянием в метрах, проходимым им -в течение 1 сек. На-прнмер, если за 20 сек.
ветер прошел расстояние 160 м, то его скорость v за данный промежуток времени была равна:
Скорость ветра отличается большим непостоянством: она изменяется не только за продолжительное время, но и за короткие промежутки времени (в течение часа, минуты и даже секунды) на большую величину. На фиг. 1 дана кривая, показывающая изменение скорости ветра в течение 6 мин. Из этой кривой можно заключить, что ветер движется с пульсирующей скоростью.
Скорости ветра, наблюдаемые за короткие промежутки времени - от нескольких секунд до 5 мин, называют мгно-
Фиг. 3. Анемометр завода "Метрприбор".
венными или действительными. Скорости же ветра, полученные как средние арифметические из мгновенных скоростей, называют средними скоростями ветра. Если сложить замеренные скорости ветра в течение суток и разделить на число замеров, то получится среднесуточная скорость ветра.
Если же сложить среднесуточные скорости ветра за весь месяц и разделить эту сумму на число дней месяца, то получим среднемесячную скорость ветра. Сложив среднемесячные скорости и разделив сумму на двенадцать месяцев, получим среднегодовую скорость ветра.
Скорости ветра замеряют с помощью приборов, называемых анемометрами.
Простейший анемометр, позволяющий определять мгновенные скорости зетра и называемый простейшим флюгером-анемометром, показан на фиг. 2, Он состоит из металлической доски, качающейся около горизонтальной оси а, закрепленной на вертикальной стойке б. Сбоку доски на той же оси а закреплен сектор б, с восемью штифтами. На стойке б ниже сектора закреплен флюгер г, который все время устанавливает доску плоскостью к ветру. При действии последнего доска отклоняется и проходит мимо штифтов, каждый из которых указывает при этом на определенную скорость ветра. Стойка б с флюгером г поворачивается ео втулке д, в которой закреплены в горизонтальной плоскости 4 длинных стержня, указывающих главные страны света: север, юг, восток и запад, и между ними 4 коротких, указывающих на северо-восток, северо-запад, юго-восток и юго-запад. Таким образом, с помощью флюгера-анемометра можно определять одновременно и скорость и направление ветра.
Значения скоростей ветра, соответствующих каждому штифту сектора в, приведены в табл. 1.

3. Влияние препятствий на скорость и направление ветра.
Ветер, проносящийся мимо домов, деревьев, холмов и других препятствий, из прямолинейного движения переходит в беспорядочное. Воздушные струи, непосредственно обтекающие края препятствий, закручиваются в вихревые кольца и уносятся в направлении воздушного потока. На месте унесенных появляются новые вихревые кольца, которые опять уносятся, и т. д. Понятно, что там, где образуются вихри, ветер теряет свою скорость и направление.
Вихревое движение ветра, появляясь на гранях препятствия, далеко за ним постепенно затухает и совершенно прекращается на расстоянии приблизительно пятнадцатикратной высоты препятствия. Вообще вихри образуются вследствие трения движущегося воздуха о поверхность земли, постройки, деревья и т. п.
Поэтому вблизи поверхности скорость ветра меньше, чем на высоте.
Об этом необходимо помнить при выборе места для установки Еетродвигателя. Ветроколесо двигателя должно быть вынесено выше препятствий, где поток ветра ничем не нарушается. Вообще ветроколесо должно быть вынесено возможно выше, так как с увеличением высоты увеличивается скорость ветра, а вместе с этим увеличивается и мощность ветродвигателя, Например, при увеличении высоты положения ветроколеса в два раза его мощность увеличится примерно в полтора раза. Однако, при выборе высоты необходимо учитывать удобства обслуживания ветродвигателя при эксплоата-ции. Минимальная высота башни под ветродвигатель должна быть выбрана с таким расчетом, чтобы нижний конец крыла ветроколеса был на 1,5 - 2 м выше ближайшего препятствия, как показано на фиг. 4.

4. Повторяемость ветра. Наблюдения показывают, что скорость ветра все время изменяется, и трудно угадать, сколько часов дует ветер с той или иной скоростью в течение суток или месяца. Нам, однако, нужно знать повторяемость ветра, т. е. сколько часов был ветер со скоростью 3, 4, 5 м/сек и т. д. в течение некоторого промежутка времени. Это даст возможность определить, с какой мощностью может работать ветродвигатель и сколько лошадиных сило-часов он выработает за месяц или за год. Еще в 1895 г. М. М. Поморцев установил закономерность повторяемости в зависимости от среднегодовых скоростей ветра. На основании этой закономерности составлена табл. 3 повторяемости разных скоростей ветра в зависимости от среднегодовых скоростей. Например, в районах со среднегодовой скоростью ветра 4 м/сек ветер был равен О (штиль) 307 час Это число представляет сумму часов кратковременных штилей и штилей, вообще наблюдавшихся в разное время года; слабый ветер со скоростью 3 м/сек дул 1 445 час.; ветер со скоростью 8 м/сек дул 315 час. и т. д.


KOHEЦ ФPAГMEHTA КНИГИ

Другие дипломы по предмету Физика

т, что использование ВЭУ выгодно даже в тех случаях, когда ВЭС работают круглосуточно. Главная задача применения ВЭУ в сельской местности (с. Некрасовка) - экономия топлива для выработки энергии.

Выгодно это или невыгодно - можно определить достаточно просто, ответив на вопрос: "За сколько лет может окупиться балансовая стоимость ветроагрегата (например, АВЭ-250) за счет стоимости сэкономленного топлива?". Нормативный срок окупаемости станции составляет 6,7 года. За год в с. Некрасовка потребляется 129180 кВт*ч.1 кВт энергии для предприятий в настоящее время составляет 2,85руб. Из этого можно найти срок окупаемости затрат:

Токуп = П/Пч, Пч = П - З,

где: П - прибыль предприятия без вычета затрат на покупку ВЭС, Пч - чистая прибыль предприятия, З - затраты вложенные на покупку ВЭС (700 тыс. руб.)

П = 6,7*129180*2,85 = 2466692 руб

Пч = 2466692 - 900000 = 1566692 руб

Токуп = 2466692/1566692 = 1,6 года

Мы видим, что срок окупаемости вложений в электростанцию меньше нормы, которая составляет 6,7 лет, следовательно, покупка данной ВЭС является эффективной. При этом ВЭС обладает значительным преимуществом над ТЭЦ, благодаря тому, что капитальные затраты практически не "омертвляются", поскольку ветроустановка начинает вырабатывать электроэнергию через 1 - 3 недели после её завозки на место установки.

Заключение

В данном курсовом проекте я рассмотрела проектировку ветреной установки для с. Некрасовка, с целью снабжения необходимой энергией данного села.

Мною были проведены расчёты:

выбор необходимого генератора

выбор кабеля

расчёт срока окупаемости

расчёт лопасти

выбраны ветровые характеристики

В заключении, я могу сказать, что постройка ВЭС в данном районе является целесообразна. Благодаря тому, что мы живём на севере Сахалина, и здесь преобладают постоянные ветра (а ветер неисчерпаемый источник энергии и при его преобразовании нет вредных выбросов в окружающую среду), и в рассматриваемом Охинском районе кроме ТЭЦ, никаких альтернативных источников поставки электроэнергии не существует, то мой проект является уместным для данного участка.

Список используемой литературы

1. Безруких П.П. Использование возобновляемых источников энергии в России // Информационный бюллетень "Возобновляемая энергия". М.: Интерсоларцентр, 1997. №1.

Е. М. Фатеев.

1. Развитие ветроиспользования
2. Применение ветродвигателей в сельском хозяйстве

ЧАСТЬ ПЕРВАЯ ВЕТРОДВИГАТЕЛИ
Глава I. Краткие сведения из аэродинамики

3. Воздух и его свойства
4. Уравнение неразрывности. Уравнение Бернулли
5 Понятие о вихревом движении

6. Вязкость


7. Закон подобия. Критерии подобия
8. Пограничный слой и турбулентность

Глава II. Основные понятия экспериментальной аэродинамики

9. Оси координат и аэродинамические коэфициенты
10. Определение аэродинамических коэфициентов. Поляра Лилиенталя
11. Индуктивное сопротивление крыла
12. Теорема Н. Е. Жуковского о подъемной силе крыла
13. Переход с одного размаха крыльев на другой

Глава III. Системы ветродвигателей

14. Классификация ветродвигателей по принципу их работы
15. Преимущества и недостатки различных систем ветродвигателей

Глава IV. Теория идеального ветряка

16. Классическая теория идеального ветряка
17. Теория идеального ветряка проф. Г. X. Сабинина

Глава V. Теория реального ветряка проф. Г. X. Сабинина

18. Работа элементарных лопастей ветроколеса. Первое уравнение связи
19. Второе уравнение связи
20. Момент и мощность всего ветряка
21. Потери ветряных двигателей
22. Аэродинамический расчёт ветроколеса
23. Расчёт характеристики ветроколеса
24. Профили «Эсперо» и построение их

Глава VI. Экспериментальные характеристики ветродвигателей

25. Метод получения экспериментальных характеристик
26. Аэродинамические характеристики ветродвигателей
27. Экспериментальная проверка теории ветродвигателей

Глава VII. Экспериментальная проверка ветродвигателей

28. Оборудование башни для испытания ветродвигателей
29. Соответствие- характеристик ветродвигателя и его моделей

Глава VIII. Установ ветродвигателей на ветер

30. Установ при помощи хвоста
31. Установ виндрозами
32. Установ расположением ветроколеса за башней

Глава IX. Регулирование числа оборотов и мощности ветродвигателей

33. Регулирование выводом ветроколеса из-под ветра
34. Регулирование уменьшением поверхности крыльев
35. Регулирование поворотом лопасти или части её около оси маха
36. Регулирование воздушным тормозом

Глава X. Конструкции ветродвигателей

37. Многолопастные ветродвигатели
38. Быстроходные (малолопастные) ветродвигатели
39. Веса ветродвигателей

Глава XI. Расчёт ветродвигателей на прочность

40. Ветровые нагрузки на крылья и расчёт их на прочность
41. Ветровая нагрузка на хвост и боковую лопату регулирования
42. Расчёт головки ветродвигателя
43. Гироскопический момент ветроколеса
44. Башни ветродвигателей

ЧАСТЬ ВТОРАЯ ВЕТРОСИЛОВЫЕ УСТАНОВКИ
Глава XII. Ветер как источник энергии

45. Понятие о происхождении ветра
46. Основные величины, характеризующие ветер с энергетической стороны
47. Энергия ветра
48. Аккумулирование энергия ветра

Глава XIII. Характеристики ветросиловых агрегатов

49. Рабочие характеристики ветродвигателей и поршневых насосов
50. Работа ветродвигателей с центробежными насосами
51. Работа ветродвигателей с жерновыми поставами и сельскохозяйственными машинами

Глава XIV. Ветронасосные установка

52. Ветронасосные установки для водоснабжения
53. Водоразборные баки и водонапорные башни при ветронасосных установках
54. Типовые конструкции ветронасосных установок
55. Опыт эксплуатации ветронасосных установок для водоснабжения в сельском хозяйстве
56. Ветрооросительные установки

Глава XV. Ветряные мельницы

57. Типы ветряных мельниц
58. Техническая характеристика ветряных мельниц
59. Повышение мощности старых ветряных мельниц
60. Ветряные мельницы нового типа
61. Эксплоатационные характеристики ветряных мельниц

Глава XVI. Ветроэлектростанции

62. Типы генераторов для работы с ветродвигателями и регуляторы напряжения
63. Ветрозарядные агрегаты
64. Ветроэлектростанции малых мощностей
65. Параллельная работа ветроэлектростанций в общую сеть с крупными тепловыми станциями и гидроэлектростанциями
66. Экспериментальная проверка работы ВЭС параллельно в сеть
67. Мощные электростанции для параллельной работы в сеть.
68. Краткие сведения о заграничных ветроэлектростанциях.

Глава XVII. Краткие сведения по монтажу и ремонту ветродвигателей и уход за ними

69. Монтаж ветродвигателей малых мощностей от 1 до 15 л. с
70. Об уходе за ветродвигателями и ремонте их
71. Техника безопасности при монтаже и обслуживании ветродвигателей

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ

УНИВЕРСИТЕТ “СТАНКИН”

Кафедра Инженерной экологии и безопасности

жизнедеятельности

Доклад на тему:

“Альтернативные источники энергии: Ветер”

Выполнил: Деминский Николай Вячеславович

Проверила: Худошина Марина Юрьевна

Ветроэнергетика - отрасль энергетики, специализирующаяся на использовании энергии ветра - кинетической энергии воздушных масс в атмосфере. Энергию ветра относят к возобновляемым видам энергии, так как она является следствием деятельности солнца. Ветроэнергетика является бурно развивающейся отраслью, так в конце 2008 года общая установленная мощность всех ветрогенераторов составила 120 гигаватт, увеличившись вшестеро с 2000 года.

Энергия ветра появляется вместе с солнцем

Энергия ветра на самом деле является формой солнечной энергии, так как тепло солнца становится причиной ветров. Солнечное излучение нагревает всю поверхность Земли, но неравномерно и с разной скоростью.

Различные виды поверхности - песок, вода, камень и различные виды почвы - впитывают, сохраняют, отражают и высвобождают тепло с различной скоростью, а Земля становится в целом теплее днем и холоднее ночью.

В результате воздух над поверхностью Земли также нагревается и охлаждается с разной скоростью. Горячий воздух поднимается, снижая атмосферное давление около поверхности Земли, которое притягивает на замену более холодный воздух. Такое передвижение воздуха мы и называем ветром.

Энергия ветра непостоянна

Когда воздух движется, вызывая ветер, он обладает кинетической энергией - энергией, которая появляется каждый раз, когда масса приходит в движение. Если использовать правильную технологию, то кинетическую энергию ветра можно захватить и преобразовать в другие виды энергии, например электричество и механическую энергию. Это и есть энергия ветра.

Также как и самые древние ветряные мельницы в Персии, Китае и Европе использовали энергию ветра для выкачивания воды или размалывания зерна, сегодняшние ветряные турбины, соединенные с точками потребления, и ветряные электростанции с большим количеством турбин используют энергию ветра для генерирования чистой, возобновляемой энергии для питания домов и предприятий.

Энергия ветра чиста и возобновляема

Энергия ветра считается важным компонентом любой долгосрочной стратегии в области энергетики, так как при ее генерации используется природный и практически неистощимый источник энергии - ветер. Это резко контрастирует с традиционными электростанциями на ископаемом топливе.

Энергия ветра также чиста; она не загрязняет воздух, почву и воду. Это важное отличие энергии ветра от некоторых других возобновляемых источников энергии, например, атомной энергии, которая производит огромное количество трудноуправляемых отходов.

Энергия ветра иногда конфликтует с другими приоритетами

Одним из препятствий на пути увеличения использования энергии ветра в мире является то, что ветровые электростанции должны располагаться на больших участках земли или вдоль побережья для наиболее эффективного захвата ветра.

Использование этих территорий для генерации энергии ветра иногда конфликтует с другими приоритетами, например, сельским хозяйством, градостроительством или красивыми видами на море из дорогих домов, расположенных в лучших зонах.

Будущий рост потребления энергии ветра

Приоритеты изменятся по мере роста потребности в чистой и возобновляемой энергии и расширении поиска альтернатив ограниченным запасам нефти, угля и природного газа.

И по мере снижения стоимости энергии ветра благодаря совершенствованию технологий и улучшению технологий генерирования энергии, этот вид энергии будет становиться все более уместным в качестве главного источника электричества и механической энергии.

Ветроэнергетика в России

Технический потенциал ветровой энергии России оценивается свыше 50 000 миллиардов кВт·ч/год. Экономический потенциал составляет примерно 260 млрд кВт·ч/год, то есть около 30 процентов производства электроэнергии всеми электростанциями России.

Установленная мощность ветровых электростанций в стране на 2006 год составляет около 15 МВт.

Одна из самых больших ветроэлектростанций России (5,1 МВт) расположена в районе поселка Куликово Зеленоградского района Калининградской области. Её среднегодовая выработка составляет около 6 млн кВт·ч.

На Чукотке действует Анадырская ВЭС мощностью 2,5 МВт (10 ветроагрегатов по 250 кВт) среднегодовой выработкой более 3 млн кВт·ч, параллельно станции установлен ДВС, вырабатывающий 30 % энергии установки.

Также крупные ветроэлектростанции расположены у деревни Тюпкильды Туймазинского района респ. Башкортостан (2,2 МВт).

В Калмыкии в 20 км от Элисты размещена площадка Калмыцкой ВЭС планировавшейся мощностью в 22 МВт и годовой выработкой 53 млн кВт·ч, на 2006 год на площадке установлена одна установка «Радуга» мощностью 1 МВт и выработкой от 3 до 5 млн кВт·ч.

В республике Коми вблизи Воркуты строится Заполярная ВДЭС мощностью 3 МВт. На 2006 действуют 6 установок по 250 кВт общей мощностью 1,5 МВт.

На острове Беринга Командорских островов действует ВЭС мощностью 1,2 МВт.

В 1996 году в Цимлянском районе Ростовской области установлена Маркинская ВЭС мощностью 0,3 МВт.

В Мурманске действует установка мощностью 0,2 МВт.

Успешным примером реализации возможностей ветряных установок в сложных климатических условиях является ветродизельная электростанция на мысе Сеть-Наволок Кольского полуострова мощностью до 0,1 МВт. В 17 километрах от неё в 2009 году начато обследование параметров будушей ВЭС работающей в комплексе с Кислогубской ПЭС.

Существуют проекты на разных стадиях проработки Ленинградской ВЭС 75 МВт Ленинградская область, Ейской ВЭС 72 МВт Краснодарский край, Морской ВЭС 30 МВт Карелия, Приморской ВЭС 30 МВт Приморский край, Магаданской ВЭС 30 МВт Магаданская область, Чуйской ВЭС 24 МВт Республика Алтай, Усть-Камчатской ВДЭС 16 МВт Камчатская область, Новиковской ВДЭС 10 МВт Республика Коми, Дагестанской ВЭС 6 МВт Дагестан, Анапской ВЭС 5 МВт Краснодарский край, Новороссийской ВЭС 5 МВт Краснодарский край и Валаамской ВЭС 4 МВт Карелия.

Началось строительство «Морского ветропарка» в Калининградской области мощностью 50 МВт. В 2007 году этот проект был заморожен.

Как пример реализации потенциала территорий азовского моря можно указать Новоазовскую ВЭС, действующей на 2007 год мощностью в 20,4 МВт, установленную на украинском побережье Таганрогского залива.

Реализуется «Программа развития ветроэнергетики РАО „ЕЭС России“». На первом этапе (2003-2005 г.) начаты работы по созданию многофункциональных энергетических комплексов (МЭК) на базе ветрогенераторов и двигателей внутреннего сгорания. На втором этапе будет создан опытный образец МЭТ в посёлке Тикси - ветрогенераторы мощностью 3 МВт и двигатели внутреннего сгорания. В связи с ликвидацией РАО ЕЭС России все проекты, связанные с ветроэнергетикой были переданы компании РусГидро. В конце 2008 года РусГидро начала поиск перспективных площадок для строительства ветряных электростанций.

Экономия топлива

Ветряные генераторы практически не потребляют ископаемого топлива. Работа ветрогенератора мощностью 1 МВт за 20 лет эксплуатации позволяет сэкономить примерно 29 тыс. тонн угля или 92 тыс. баррелей нефти.

Литература:

1) Статья Larry West, http://environment.about.com

2) Д. де Рензо, В. В. Зубарев Ветроэнергетика. Москва. Энергоатомиздат, 1982

3) Е. М. Фатеев Вопросы ветроэнергетики. Сборник статей. Издательство АН СССР, 1959

Приложение:

Современный альтернативный источник энергии (ветер)

Мельница со станиной

«Мельницы на козлах, так называемые немецкие мельницы, являлись до середины XVI в. единственно известными. Сильные бури могли опрокинуть такую мельницу вместе со станиной. В середине XVI столетия один фламандец нашел способ, посредством которого это опрокидывание мельницы делалось невозможным. В мельнице он ставил подвижной только крышу, и для того, чтобы поворачивать крылья по ветру, необходимо было повернуть лишь крышу, в то время как само здание мельницы было прочно укреплено на земле» (К. Маркс . «Машины: применение природных сил и науки»).

Масса козловой мельницы была ограниченной в связи с тем, что её приходилось поворачивать вручную. Поэтому была ограниченной и её производительность. Усовершенствованные мельницы получили название шатровых .

Современные методы генерации электроэнергии из энергии ветра

Современные ветрогенераторы работают при скоростях ветра от 3-4 м/с до 25 м/с.

Наибольшее распространение в мире получила конструкция ветрогенератора с тремя лопастями и горизонтальной осью вращения, хотя кое-где ещё встречаются и двухлопастные. Были попытки построить ветрогенераторы так называемой ортогональной конструкции, то есть с вертикальным расположением оси вращения. Считается, что они имеют преимущество в виде очень малой скорости ветра, необходимой для начала работы ветрогенератора . Главная проблема таких генераторов - механизм торможения. В силу этой и некоторых других технических проблем ортогональные ветроагрегаты не получили практического распространения в ветроэнергетике.

Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. В море, на расстоянии 10-12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции . Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров.

Могут использоваться и другие типы подводных фундаментов, а также плавающие основания. Первый прототип плавающей ветряной турбины построен компанией H Technologies BV в декабре 2007 года . Ветрогенератор мощностью 80 кВт установлен на плавающей платформе в 10,6 морских милях от берега Южной Италии на участке моря глубиной 108 метров.

Использование энергии ветра

В 2007 году в Европе было сконцентрировано 61 % установленных ветряных электростанций, в Северной Америке 20 %, Азии 17 %.

Страна 2005 г., МВт 2006 г., МВт 2007 г., МВт 2008 г. МВт.
США 9149 11603 16818 25170
Германия 18428 20622 22247 23903
Испания 10028 11615 15145 16754
Китай 1260 2405 6050 12210
Индия 4430 6270 7580 9645
Италия 1718 2123 2726 3736
Великобритания 1353 1962 2389 3241
Франция 757 1567 2454 3404
Дания 3122 3136 3125 3180
Португалия 1022 1716 2150 2862
Канада 683 1451 1846 2369
Нидерланды 1224 1558 1746 2225
Япония 1040 1394 1538 1880
Австралия 579 817 817,3 1306
Швеция 510 571 788 1021
Ирландия 496 746 805 1002
Австрия 819 965 982 995
Греция 573 746 871 985
Норвегия 270 325 333 428
Бразилия 29 237 247,1 341
Бельгия 167,4 194 287 -
Польша 73 153 276 472
Турция 20,1 50 146 433
Египет 145 230 310 365
Чехия 29,5 54 116 -
Финляндия 82 86 110 -
Украина 77,3 86 89 -
Болгария 14 36 70 -
Венгрия 17,5 61 65 -
Иран 23 48 66 85
Эстония 33 32 58 -
Литва 7 48 50 -
Люксембург 35,3 35 35 -
Аргентина 26,8 27,8 29 29
Латвия 27 27 27 -
Россия 14 15,5 16,5 -

Таблица: Суммарные установленные мощности, МВт, по странам мира 2005-2007 г. Данные Европейской ассоциации ветроэнергетики и GWEC .

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 прогноз 2010 прогноз
7475 9663 13696 18039 24320 31164 39290 47686 59004 73904 93849 120791 140000 170000

Таблица: Суммарные установленные мощности, МВт, и прогноз WWEA до 2010 г.

В 2007 году более 20 % электроэнергии в Дании вырабатывалось из энергии ветра .

Ветроэнергетика в России

Технический потенциал ветровой энергии России оценивается свыше 50 000 миллиардов кВт·ч/год. Экономический потенциал составляет примерно 260 млрд кВт·ч/год, то есть около 30 процентов производства электроэнергии всеми электростанциями России.

Установленная мощность ветровых электростанций в стране на 2006 год составляет около 15 МВт.

Одна из самых больших ветроэлектростанций России (5,1 МВт) расположена в районе поселка Куликово Зеленоградского района Калининградской области . Её среднегодовая выработка составляет около 6 млн кВт·ч.

Успешным примером реализации возможностей ветряных установок в сложных климатических условиях является ветродизельная электростанция на мысе Сеть-Наволок.

Началось строительство «Морского ветропарка» в Калининградской области мощностью 50 МВт. В 2007 году этот проект был заморожен .

Как пример реализации потенциала территорий азовского моря можно указать Новоазовскую ВЭС , действующей на 2007 год мощностью в 20,4 МВт, установленную на украинском побережье Таганрогского залива .

Реализуется «Программа развития ветроэнергетики РАО „ЕЭС России“». На первом этапе ( - г.) начаты работы по созданию многофункциональных энергетических комплексов (МЭК) на базе ветрогенераторов и двигателей внутреннего сгорания . На втором этапе будет создан опытный образец МЭТ в посёлке Тикси - ветрогенераторы мощностью 3 МВт и двигатели внутреннего сгорания . В связи с ликвидацией РАО ЕЭС России все проекты, связанные с ветроэнергетикой были переданы компании РусГидро . В конце 2008 года РусГидро начала поиск перспективных площадок для строительства ветряных электростанций .

Перспективы

Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты.

Европейским Союзом установлена цель: к 2010 году установить 40 тыс. МВт ветрогенераторов , а к 2020 году - 180 тыс. МВт .

Международное Энергетическое Агентство International Energy Agency (IEA) прогнозирует, что к 2030 году спрос на ветрогенерацию составит 4800 гигаватт.

Экономические аспекты ветроэнергетики

Лопасти ветрогенератора на строительной площадке.

Экономия топлива

Ветряные генераторы практически не потребляют ископаемого топлива. Работа ветрогенератора мощностью 1 МВт за 20 лет эксплуатации позволяет сэкономить примерно 29 тыс. тонн угля или 92 тыс. баррелей нефти .

Себестоимость электроэнергии

Себестоимость электричества, производимого ветрогенераторами , зависит от скорости ветра.

Для сравнения: себестоимость электричества, производимого на угольных электростанциях США , 4,5-6 цента/кВт·ч. Средняя стоимость электричества в Китае 4 цента/кВт·ч.

При удвоении установленных мощностей ветрогенерации себестоимость производимого электричества падает на 15 %. Ожидается, что себестоимость ещё снизится на 35-40 % к концу г. В начале 80-х годов стоимость ветряного электричества в США составляла $0,38.

По оценкам Global Wind Energy Council к 2050 году мировая ветроэнергетика позволит сократить ежегодные выбросы СО 2 на 1,5 миллиарда тонн .

Шум

Ветряные энергетические установки производят две разновидности шума:

  • механический шум (шум от работы механических и электрических компонентов)
  • аэродинамический шум (шум от взаимодействия ветрового потока с лопастями установки)
Источник шума Уровень шума, дБ
Болевой порог человеческого слуха 120
Шум турбин реактивного двигателя на удалении 250 м 105
Шум от отбойного молотка в 7 м 95
Шум от грузовика при скорости движения 48 км/ч на удалении в 100 м 65
Шумовой фон в офисе 60
Шум от легковой автомашины при скорости 64 км/ч 55
Шум от ветрогенератора в 350 м 35-45
Шумовой фон ночью в деревне 20-40

В непосредственной близости от ветрогенератора у оси ветроколеса уровень шума достаточно крупной ветроустановки может превышать 100 дБ.

Примером подобных констуктивных просчетов является ветрогенератор Гровиан. Из-за высокого уровня шума установка проработала около 100 часов и была демонтирована.

Законы, принятые в Великобритании , Германии , Нидерландах и Дании , ограничивают уровень шума от работающей ветряной энергетической установки до 45 дБ в дневное время и до 35 дБ ночью. Минимальное расстояние от установки до жилых домов - 300 м.

Визуальное воздействие

Визуальное воздействие ветрогенераторов - субъективный фактор. Для улучшения эстетического вида ветряных установок во многих крупных фирмах работают профессиональные дизайнеры. Ландшафтные архитекторы привлекаются для визуального обоснования новых проектов.

В обзоре, выполненном датской фирмой AKF, стоимость воздействия шума и визуального восприятия от ветрогенераторов оценена менее 0,0012 евро на 1 кВт·ч. Обзор базировался на интервью, взятых у 342 человек, живущих поблизости от ветряных ферм. Жителей спрашивали, сколько они заплатили бы за то, чтобы избавиться от соседства с ветрогенераторами.

Использование земли

Турбины занимают только 1 % от всей территории ветряной фермы . На 99 % площади фермы возможно заниматься сельским хозяйством или другой деятельностью

tctnanotec.ru - Портал о дизайне и ремонте ванной комнаты