Аэродинамические характеристики профиля крыла. Самый лучший профиль для СЛА. График основных характеристик профиля clark-y

Пожалуй, главным самолетным агрегатом является крыло. Именно крыло, создающее подъемную силу, держит многотонный самолет в воздухе, не давая ему упасть. Не случайно у конструкторов существует выражение о том, что тот, кто владеет крылом, управляет и самолетом. Погоня за улучшением аэродинамических характеристик летательных аппаратов вынуждает разработчиков постоянно совершенствовать крыло, работая над его формой, весом и профилем.

Крыло в профиль

Профиль крыла самолета - это геометрическое сечение крыла, проходящее параллельно оси самолета. Или проще - вид крыла сбоку. За долгие годы развития авиастроения в разных лабораториях и институтах постоянно разрабатывали и испытывали крылья самой различной конфигурации. Росли скорости, масса самолетов, менялись задачи — и все это требовало новые профили крыла.

Виды профилей

На сегодняшний день существуют различные профили крыла, отличающиеся по назначению. Один и тот же тип может иметь множество вариантов и применяться на различных самолетах. Но в целом существующие основные типы профилей можно проиллюстрировать изображением ниже.

  1. Симметричный.
  2. Несимметричный.
  3. Плосковыпуклый.
  4. Двояковыпуклый.
  5. S-образный.
  6. Ламинизированный.
  7. Чечевицеобразный.
  8. Ромбовидный.
  9. Клиновидный.

На отдельных самолетах применяется изменяющийся профиль по длине крыла, но обычно его форма неизменна на всем протяжении.

Геометрия

Внешне профиль крыла напоминает червяка или что-то в этом роде. Являясь сложной геометрической фигурой, имеет свой набор характеристик.

На приведенном рисунке указаны основные геометрические характеристики профиля крыла самолета. Расстояние (b) называется хордой крыла, представляет собой расстояние между крайними точками спереди и сзади. Относительная толщина определяется отношением максимальной толщины профиля (Cmax) к его хорде и выражается в процентах. Координата максимальной толщины представляет собой отношение расстояние от носка до места максимальной толщины (Xc) к хорде (b) и также выражается в процентах. Средней линией является условная кривая, равноудаленная от верхних и нижних панелей крыла, а стрелкой прогиба (fmax) называется максимальное удаление средней линии от хорды. Еще один показатель - относительная кривизна — рассчитывается методом деления (fmax) на хорду (b). Традиционно все эти величины выражаются в процентах. Кроме уже упомянутых, существует радиус носика профиля, координаты наибольшей вогнутости и еще ряд других. Каждый профиль имеет свой шифр и, как правило, основные геометрические характеристики в этом шифре присутствуют.

Например, профиль В6358 имеет толщину профиля в 6 %, положение стрелки вогнутости 35 % и относительную кривизну 8 %. Система обозначений, к сожалению, не унифицирована, и разные разработчики применяют шифры каждый по-своему.

Аэродинамика

Причудливые, на первый взгляд, рисунки сечений крыла делаются не из-за любви к высокому искусству, а исключительно в прагматичных целях - для обеспечения высоких аэродинамических характеристик профилей крыла. К этим важнейшим характеристикам относятся коэффициент подъемной силы Су и коэффициент сопротивления Сх для каждого конкретного профиля. Сами коэффициенты не имеют постоянного значения и зависят от угла атаки, скорости и некоторых других характеристик. После проведения испытаний в аэродинамической трубе для каждого профиля крыла самолета может быть составлена так называемая поляра. Она отражает зависимость между Сх и Су при определенном угле атаки. Созданы специальные справочники, содержащие подробную информацию о каждом аэродинамическом профиле крыла и иллюстрированные соответствующими графиками и схемами. Эти справочники находятся в свободном доступе.

Выбор профиля

Разнообразие летательных аппаратов, типы их двигательных установок и их назначение требуют тщательного подхода к выбору профиля крыла самолета. При проектировании новых летательных аппаратов обычно рассматривается несколько альтернатив. Чем больше относительная толщина крыла, тем больше сопротивление. Но при тонких крыльях большой длины сложно обеспечить надлежащую прочность конструкции.

Отдельно стоит вопрос по сверхзвуковым машинам, требующим особого подхода. Совершенно естественно, что профиль крыла самолета Ан-2 ("кукурузник") будет отличаться от профиля истребителя и пассажирского лайнера. Симметричный и S-образный профили крыла создают меньшую подъемную силу, но отличаются стабильностью, тонкое крыло с небольшим изгибом подходит для скоростных спортивных машин и истребителей, а профилем крыла с наибольшей подъемной силой можно назвать толстое крыло с большим изгибом, применяемое на больших пассажирских самолетах. Сверхзвуковые самолеты оснащаются крыльями, имеющими чечевицеобразный профиль, а для гиперзвуковых применяются ромбовидные и клиновидные профили. Следует иметь в виду, что создав самый лучший профиль, можно потерять все его преимущества только из-за некачественной обработки поверхности панелей крыла или неудачной конструкции самолета.

Метод расчета характеристик

В последнее время расчеты характеристик крыла определенного профиля осуществляются с использованием ЭВМ, которые способны проводить многофакторное моделирование поведения крыла в разных условиях. Но самым надежным способом являются естественные испытания, проводимые на специальных стендах. Отдельные сотрудники «старой школы» могут продолжать делать это вручную. Звучит метод просто угрожающе: «полный расчет крыла с использованием интегродифференциальных уравнений относительно неизвестной циркуляции». Суть метода заключается в представлении циркуляции воздушного потока вокруг крыла в виде тригонометрических рядов и в поиске коэффициентов этих рядов, которые удовлетворяют граничным условиям. Работа эта очень трудоемкая и все равно дает лишь приблизительные характеристики профиля крыла самолета.

Конструкция крыла самолета

Красиво нарисованный и детально рассчитанный профиль необходимо изготовить в реальности. Крыло, помимо выполнения своей основной функции - создания подъемной силы, должно выполнять еще ряд задач, связанных с размещением топливных баков, различных механизмов, трубопроводов, электрических жгутов, датчиков и много другого, что делает его крайне сложным техническим объектом. Но если говорить очень упрощенно, крыло самолета состоит из набора нервюр, которые обеспечивают формирование нужного профиля крыла, располагающихся поперек крыла, и лонжеронов, располагающихся вдоль. Сверху и снизу эта конструкция закрывается обшивкой из алюминиевых панелей со стрингерным набором. Нервюры по внешним обводам полностью соответствуют профилю крыла самолета. Трудоемкость изготовления крыла достигает 40 % от общей трудоемкости изготовления всего самолета.

Классический профиль крыла имеет такой вид

Наибольшая толщина располагается примерно на 40% хорды.

Средняя линия при этом изменяется примерно таким образом.


Такие профили стали называть сверхкритическими (суперкритическими). Достаточно быстро они эволюционировали в сверхкритические профили 2-го поколения - передняя часть приближалась к симметричной, а подрезка усиливалась.


Уход средней части профиля вниз принес бы дополнительное продвижение по скорости.

Однако дальнейшее развитие в этом направлении остановилось - еще более сильная подрезка делала заднюю кромку слишком тонкой с точки зрения прочности. Другим недостатком сверхкритического крыла 2-го поколения был момент на пикирование, который приходилось парировать нагрузкой на горизонтальное оперение.

Мы решили: раз нельзя подрезать сзади - нужно подрезать спереди.


О результате пишут:

"Как вы понимаете, эта задача была с блеском решена. И решение было столь же гениально, сколько и просто ― применили подрезку в передней нижней части крыла и уменьшили её в задней . Это идея разом ликвидировала обе проблемы (пикирования и прочности), сохранив все достоинства сверхкритического профиля .

Теперь у инженеров появилась прямая возможность увеличить скорость полета более чем на 10% без увеличения мощности двигателей, либо увеличить прочность крыла без увеличения его массы.

Полная аэродинамическая сила и ее проекции

При расчете основных летно-технических характеристик самолета, а также его устойчивости и управляемости необходимо знать силы и моменты, действующие на самолет.

Аэродинамические силы, действующие на поверхность самолета (давление и трение), можно привести к главному вектору аэродинамических сил , приложенному в центре давления (рис. 1), и паре сил, момент которых равен главному моменту аэродинамических сил относительно центра масс летательного аппарата.

Рис. 1. Полная аэродинамическая сила и ее проекции в двумерном (плоском) случае

Аэродинамическую силу обычно задают проекциями на оси скоростной системы координат (ГОСТ 20058-80). При этом проекцию на ось , взятую с обратным знаком, называют силой лобового сопротивления , проекцию на ось - аэродинамической подъемной силой , проекцию на ось - аэродинамической боковой силой . Эти силы могут быть выражены через безразмерные коэффициенты лобового сопротивления , подъемной силы и боковой силы , соответственно:

; ; ,

где - скоростной напор, Н/м 2 ; - воздушная скорость, м/с; r - массовая плотность воздуха, кг/м 3 ; S - площадь крыла самолета, м 2 . К основным аэродинамическим характеристикам относят также аэродинамическое качество

.

Аэродинамические характеристики крыла , , зависят от геометри­ческих параметров профиля и крыла, ориентации крыла в потоке (угла атаки a и скольжения b), параметров подобия (чисел Рейнольдса Re и Маха ),высоты полета H , а также от других параметров. Числа Маха и Рейнольдса являются безразмерными величинами и определяются выражениями

где a – скорость звука, n - кинематический коэффициент вязкости воздуха в м 2 /с, – характерный размер (как правило полагают , где – средняя аэродинамическая хорда крыла).Для определения аэродинамических характеристик самолета иногда исполь­зуются более простые, приближенные методы. Самолет рассматривается как совокупность отдельных частей: крыла, фюзеляжа, оперения, гондол двигателей и т.д. Определяются силы и моменты, действующие на каждую из отдельных частей. При этом используются известные результаты аналитических, численных и экспериментальных исследований. Силы и моменты, действующие на самолет, находятся как сумма соответствующих сил и моментов, действующих на каждую из его частей, с учетом их взаимного влияния.



Согласно предлагаемой методике, расчет аэродинамических харак­теристик крыла производится, если заданы некоторые геометрические и аэродинамические характеристики профиля крыла.

Выбор профиля крыла

Основные геометрические характеристики профиля задаются следующими параметрами. Хордой профиля называется отрезок прямой, соединенной две наиболее удаленные точки профиля. Хорда делит профиль на две части: верхнюю и нижнюю. Наибольший перпендикулярный хорде отрезок, заключенный между верхним и нижним обводами профиля, называется толщиной профиля c (рис. 2). Линия, соединяющая середины отрезков, перпендикулярных хорде и заключенных между верхним и нижним обводами профиля, называется средней линией . Наибольший перпендикулярный хорде отрезок, заключенный между хордой и средней линией профиля, называется кривизной профиля f . Если , то профиль называется симметричным .

Рис. 2. Профиль крыла

b - хорда профиля; c - толщина профиля; f - кривизна профиля; - координата максимальной толщины; - координата максимальной кривизны

Толщину c и кривизну профиля f , а также координаты и , как правило измеряют в относительных единицах , , , или в процентах , , , .

Выбор профиля крыла связан с удовлетворением различных требований, предъявляемых к самолету (обеспечение требуемой дальности полета, высокой топливной эффективности,крейсерской скорости , обеспечение безопасных условий взлета и посадки и др.). Так, для легких самолетов с упрощенной механизацией крыла следует обращать особое внимание на обеспечение максимального значения коэффициента подъемной силы, особенно на режиме взлета и посадки. Как правило, такие самолеты имеют крыло с большим значением относительной толщины профиля % = 12 ¸ 15%.

Для дальних самолетов с высокой дозвуковой скоростью полета, у которых увеличение на взлетно-посадочных режимах достигается благодаря механизации крыла, упор делается на достижение лучших характеристик на крейсерском режиме, в частности, на обеспечение режимов .

Для нескоростных самолетов выбор профилей производится из серии стандартных (обычных) профилей NACA или ЦАГИ, которые при необходи­мости могут быть модифицированы на этапе эскизного проектирования самолета.

Так, профили NACA с четырехзначными обозначениями могут быть использованы на легких тренировочных самолетах, а именно для концевых сечений крыла и хвостового оперения. Например, профили NACA2412 (относительная толщина % = 12%, координата максимальной толщины % = 30%, относительная кривизна % = 2%, координата максимальной кривизны % = 40%) и NACA4412 ( % = 12%, % = 30%, % = 4%, % = 40%) имеют достаточно высокое значение и плавные срывные характеристики в районе критического угла атаки .

Пятизначные профили NACA (серии 230) обладают наибольшей подъемной силой из всех стандартных серий, но их срывные характеристики менее благоприятны.

Профили NACA с шестизначным обозначением ("ламинарные") имеют низкое профильное сопротивление в узком диапазоне значений коэф­фициента . Эти профили очень чувствительны к шероховатости поверхности, загрязнениям, наростам .

Классические (обычные) профили, используемые на самолетах с малы­ми дозвуковыми скоростями, отличаются достаточно большими местными возмущениями (разряжениями) на верхней поверхности и, соответственно, небольшими значениями критического числа Маха . Критическое число Маха является важным параметром, определяющим величину лобового сопротивления самолета (при > на поверхности летательного аппарата появляются области местных сверхзвуковых течений и дополнительное волновое сопротивление).

Активный поиск путей повышения крейсерской скорости полета (без увеличения сопротивления самолета) привел к необходимости изыскать спо­собы дальнейшего повышения по сравнению с классическими скорост­ными профилями. Таким способом повышения является уменьшение кривизны верхней поверхности, что приводит к снижению возмущений на значительной части верхней поверхности. При малой искривленности верхней поверхности сверхкритического профиля уменьшается доля создаваемой им подъемной силы. Для компенсации этого явления производится подрезка хвостового участка профиля путем плавного изгиба его вниз (эффект "закрылка"). В связи с этим, средняя линия суперкритических профилей имеет харак­терный S - образный вид, с отгибом вниз хвостового участка. Для суперкритических профилей, как правило, характерно наличие отрицательной кривизны в носовой части профиля. В частности, на авиасалоне МАКС 2007 в экспозиции ОАО ²Туполев² был представлен макет самолета ТУ-204-100СМ с усеченным крылом, что позволяет получить представление о геометрических характеристиках профиля в корневой части крыла. Из представленного ниже фото (рис. 3.) видно наличие у профиля ²брюшка² и достаточно плоской верхней части, характерных для суперкритических профилей. Сверх­критические профили по сравнению с обычными скоростными профилями позволяют повысить примерно на = 0,05 ¸ 0,12 или увеличить тол­щину на % = 2,5 ¸ 5%. Применение утолщенных профилей позволяет увели­чить удлинение lкрыла на = 2,5 ¸ 3 или уменьшить угол стреловид­ности c крыла примерно на = 5 ¸ 10° при сохранении значения .

Рис. 3. Профиль крыла самолета ТУ-204-100СМ

Использование сверхкритических профилей в компоновке стреловид­ных крыльев является одним из основных направлений совершенствования аэродинамики современных транспортных и пассажирских самолетов .

Следует отметить, что при несомненном преимуществе сверхкритичес­ких профилей, по сравнению с обычными, некоторыми недостатками их яв­ляются повышение значения коэффициента момента на пикирование и тонкая хвостовая часть профиля.

Основные геометрические и аэродинамические характеристики крыла конечного размаха

В течение последних 30 ¸ 40 лет основным типом крыла для дозвуковых магистральных самолетов являлось стреловидное (c = 30 ¸ 35°) крыло с удли­нением , выполненное с сужением h = 3 ¸ 4. Перспективные пас­сажирс­кие самолеты, представленные на авиасалоне ²МАКС - 2007² (Ту - 334, Sukhoy Superjet 100) имели удлинение . Прогресс в увеличении удлинения крыла достигнут, в основном, за счет использования композиционных материалов в конструкции крыла.

Рис. 4. Однопанельное крыло

Сечение крыла в плоскости симметрии называется корневым профилем , а его хорда - корневой ; на концах крыла, соответственно, концевой профиль и концевая хорда . Расстояние от одного концевого профиля до другого называется размахом крыла . Хорда профиля крыла может изменяться вдоль его размаха. Отношение корневой хорды к концевой называется сужением крыла h. Отношение называется удлинением крыла . Здесь S - площадь проекции крыла на плоскость, перпендикулярную плоскости симметрии крыла и содержащую корневую хорду. Если по ходу полета концы отклонены относительно корневого сечения, говорят о стреловидности крыла . На рис. 4 показан угол между перпендикуляром к плоскости симметрии и передней кромкой крыла определяющий стреловидность по передней кромке . Говорят также об угле стреловидности по задней кромке , но важнее всего - угол (или просто c) стреловидностипо линии фокусов , т.е. по линии, соединяющий фокусы профилей крыла вдоль его размаха. При нулевой стреловидности по линии фокусов у крыла с ненулевым сужением кромки крыла не перпендикулярны плоскости симметрии крыла. Тем не менее, принято считать его прямым, а не стреловидным крылом. Если концы крыла отклонены относительно корневого сечения назад, то говорят о положительной стреловидности , если вперед - об отрицательной . Если передняя и задняя кромки крыла не имеют изломов, то стреловидность не меняется вдоль размаха. В противном случае, стреловидность может изменять свое значение и даже знак.

Современные стреловидные крылья с углом стреловидности c= 35° дозвуковых магистральных самолетов, рассчи­танных на крейсерские скорости, соответствующие = 0,83 ¸ 0,85, имеют среднюю относи­тельную толщину крыла % = 10 ¸ 11%, а сверхкрити­ческие крылья с углом стреловидности c = 28 ¸ 30° (для перспективных самолетов) около % = 11 ¸ 12%. Распределение толщины по размаху крыла определяется из условий реализации заданного полезного объема и минимального волнового сопротивления. С целью реализации эффекта скольжения в бортовых сече­ниях стреловидных крыльев применяют профили с "более передним" расположением точки максимальной толщины ,по сравнению с остальной частью крыла.

Расположены не в одной плоскости, то крыло имеет геометрическую крутку (рис. 6), характеризующую углом j.

Рис. 6. Концевой и корневой профили крыла при наличии геометрической крутки

Исследования аэродинамических моделей самолетов показали, что применениесверхкритических профилей в сочетании с геометрической круткой позволяют обеспечить . В данной работе использует­ся приближенная методика определения аэродинамических характеристик крыла, основанная на использовании экспериментальных данных. Расчет аэродинамических коэффициентов и крыла проводится в несколько этапов. Исходными данными для расчета являются некоторые геометрические и аэродинамические характеристики профиля. Эти данные могут быть взяты, в частности, из атласа профилей.

По результатам расчета аэродинамических коэффициентов строится зависимость и поляра - зависимость . Типичный вид этих зависимостей для малых дозвуковых скоростей представлен, соответственно, на рис. 7 и рис. 8.

Предлагаю вашему вниманию статью из цикла материалов в помощь самодеятельным конструкторам СЛА. Научный консультант - профессор кафедры самолетостроения Московского авиационного института, доктор технических наук, лауреат Государственной премии А.А. Бадягин. Статья была опубликована в журнале "Крылья Родины" №2 за 1987 год.

Зачем, спросите вы, нам статья про профиля для сверхлегких летательных аппаратов? Отвечаю - мысли выраженные в этой статье напрямую применимы в авиамоделизме - скорости сопоставимы, а соответственно и подход к конструированию.

Самый лучший профиль.

Проектирование самолета обычно начинается с выбора профиля крыла. Посидев неделю-другую над справочниками и атласами, до конца в них не разобравшись, по совету товарища выбирает самый подходящий и строит самолет, который неплохо летает. Выбранный профиль объявляется лучшим. Другой любитель таким же образом выбирает совершенно непохожий профиль и его аппарат летает хорошо. У третьего самолет едва отрывается от земли, и вначале казавшийся наивыгоднейший профиль крыла считается уже не годным.

Очевидно, далеко не все зависит от конфигурации профиля. Попробуем разобраться в этом. Сравним два крыла с совершенно разными профилями, например с симметричным, установленным на Як-55 и несимметричным Clark YH - Як-50. Для сравнения определим несколько условий. Первое: крылья с разными профилями должны иметь удлинение (l).

L=I2/S,
где I - размах, S - площадь.

Второе: поскольку угол нулевой подъемная силы у симметричного профиля равен 00, его поляру (см. рис. 1) сместим влево, что физически будет соответствовать установке крыла на самолете с некоторым положительным углом заклинения.

Теперь взглянув на график можно легко сделать важный вывод: в диапазоне летных углов атаки характеристики крыла практически не зависят от формы профиля. Разумеется, речь идет об удобообтекаемых профилях, не имеющих зон интенсивного срыва потоков диапазоне летных углов атаки. На характеристики крыла, однако, можно существенно повлиять, увеличил удлинение. На графике 1 для сравнения показаны поляры крыльев с теми же профилями, но с удлинением 10. Как видим, они пошли гораздо круче или, как говорят, производная CУ по a стала выше (CУ - коэффициент подъемной силы крыла, a - угол атаки). Это означает, что при увеличении удлинения на одних и тех же углах атаки при, практически, одних и тех же коэффициентах сопротивления Cx можно получить более высокие несущие свойства.

Теперь поговорим о том, что же зависит от формы профиля .

Во-первых , профили имеют разный максимальный коэффициент подъемной силы CУ max. Так у симметричных коэффициент подъемной силы крыла равен 1.2 - 1.4, обычные несимметричные с выпуклой нижней поверхностью могут иметь - до 1.8, с сильной вогнутостью нижней поверхности он иногда достигает 2. Однако надо помнить, что профили с очень высоким CУ max обычно имеют высокие Cx и mz - коэффициент продольного момента. Для балансировки самолета с таким профилем хвостовое оперение должно развивать большую силу. В результате растет его аэродинамическое сопротивление, и общий выигрыш, полученный за счет высоко несущего профиля, существенно снижается.

CУ max существенно влияет только на минимальную скорость самолета - сваливание. Она во многом определяет простоту техники пилотирования машины. Однако влияние CУ max на скорость сваливания заметно проявляется при больших удельных нагрузках на крыло G/S (G - вес самолета). В то же время при нагрузках, характерных для любительских самолетов, то есть в 30 - 40 кг/м2, большой CУ max не имеет существенного значения. Так его увеличение с 1.2 до 1.6 на любительском самолете способно снизить скорость сваливания не более чем на 10 км/ч.

Во-вторых , форма профиля существенно влияет на характер поведения самолета на больших углах атаки, то есть на малых скоростях при заходе на посадку, при случайном "перетягивании ручки на себя". При этом для тонких профилей с относительно острым носком характерен резкий срыв потока, что сопровождается быстрой потерей подъемной силы и резким сваливанием самолета в штопор или на нос. Для более толстых с тупым носком характерен "мягкий срыв" с медленным падением подъемной силы. При этом летчик всегда успевает понять, что попал в опасный режим, и вывести машину на меньшие углы атаки, отдав ручку от себя. Особенно опасен резкий срыв, если крыло имеет сужение в плане и более тонкий профиль на конце крыла. В этом случае срыв потока наступает несимметрично, самолет резко сваливается на крыло и переходит в штопор. Именно такой характер появляется у самолетов Як-50 и Як-52, имеющих на конце сильно сужающегося крыла очень тонкий профиль (9% на конце и 14.5% у корня) с очень острым носком - Clark YH. Здесь выявляется важное свойство профилей: более тонкие имеют меньший Cy max и меньшие критические углы атаки, то есть углы, на которых происходит срыв потока.

Гораздо лучшими характеристиками сваливания обладают крылья с постоянной относительной толщиной профиля вдоль размаха. Например, Як-55 с крылом умеренного сужения с постоянным вдоль размаха 18-процентным профилем с тупым носком при выходе на большие углы атаки плавно опускает нос и переходит в пикирование, так как срыв потока наступает в корневой части крыла, что не создает кренящих моментов. Для получения корневого срыва потока лучше, если крыло вообще не имеет сужения в плане. Именно такие крылья установлены на большинстве самолетов первоначального обучения. Ранний корневой срыв можно вызвать также установкой на крыле наплыва, показанного на рис. 2. при этом корневой профиль получает меньшею относительную толщину и "менее несущую форму". Установка такого наплыва на экспериментальном Як-50 когда-то существенно изменила характер сваливания самолета: при выходе на большие углы атаки он уже не валился на крыло, а опускал нос и переходил в пикирование.

Третий парaметр , существенно зависящий от формы профиля, - коэффициент сопротивления Cx. Однако, как показывает практика любительского самолетостроения, его снижение на любительском самолете с удельной нагрузкой 30-40 кг/м2, имеющем максимальную скорость 200-250 км/ч., практически не влияет на летные характеристики. В этом скоростном диапазоне на летные данные практически не влияют и неубирающиеся шасси, подкосы, расчалки и т.д. Даже аэродинамическое качество планера зависит в первую очередь от удлинения крыла. И только при уровне аэродинамического качества 20-25 и l более 15 за счет подбора профиля качество можно повысить на 30-40%. В то время, как на любительском самолете с качеством 10-12 за счет самого удачного профиля качество можно повысить не более, чем на 5-10%. Гораздо проще такое увеличение при необходимости достигается подбором геометрии крыла в плане. Отметим еще одну особенность: в диапазоне скоростей любительских самолетов увеличение относительной толщины профиля вплоть до 18-20% не оказывает практически никакого влияния на аэродинамическое сопротивление крыла, в то же время коэффициент подъемной силы крыла заметно возрастает.


Сравнительный анализ профилей крыла для скоростных маневренных моделей

Юрий Арзуманян

(yuri _ la )

Данная статья является обобщением обсуждения этой на форуме rc-aviation. Речь там шла конкретно о моделях воздушного боя, и, в частности, такого типа, как на Рис. 1 ниже.

Рис. 1. Бойцовка SB-7AS от клуба Alisa Air

Я намеренно не упомянул это в заголовке статьи, поскольку примененный ниже подход применим не только к моделям воздушного боя. Более того, этот подход был впервые предложен еще на заре авиации одним из отцов-основателей современной аэродинамики нашим великим ученым Николаем Егоровичем Жуковским. С тех пор предложенный им метод так и называют методом потребных тяг Н.Е. Жуковского.

Чтобы не повторять то, что обсуждалось в форуме, замечу, что вопрос об использовании вместо относительного толстого симметричного профиля более тонкого и, в особенности, несимметричного профиля для бойцовок, возникает с определенной периодичностью. Не случайно говорят, что все новое – это хорошо забытое старое. Ведь к симметричному относительно толстому профилю ведущие бойцы пришли неспроста. За этим стоят годы проб, ошибок, нахождения компромиссов и накопления опыта.

Я не буду углубляться в тему воздушного боя, поскольку последний раз управлял кордовой бойцовкой еще в пионерском детстве, и не считаю себя в этом деле экспертом. Для этого лучше внимательно проштудировать соответствующие разделы форумов, поскольку там отмечаются настоящие спортсмены, а не просто любители. Скажу только, что основные аргументы в пользу перехода на более тонкий несимметричный, а то и вообще плоско-выпуклый профиль, обычно сводятся к следующим:

1) Более низкое лобовое сопротивление модели, отсюда более высокая достижимая скорость полета.

2) Время прямого полета в ходе боя в среднем больше времени полета в инверте, поэтому прямой полет более важен.

3) Меньший вес и стоимость изготовления модели.

Есть и другие предполагаемые достоинства, но они спорны, и упоминать я их не буду. А основным недостатком при этом считается ухудшение качества обратного пилотажа (в перевернутом полете).

Итак, давайте приступим к сравнению профилей. Казалось бы, ожидаемый результат анализа очевиден. Действительно, более тонкий профиль имеет меньшее лобовое сопротивление. Значит, скорость полета будет больше, и с этим не поспоришь! Но... давайте займемся расчетами и посмотрим насколько это справедливо.Для получения числовых результатов надо отталкиваться от конкретных характеристик. Поэтому примем следующие исходные данные для модели с фото.

Характеристики планера бойцовки на Рис. 1:

Размах крыла - 1000 мм

Площадь крыла – 20.8 кв. дм.

Взлетная масса модели - 475 грамм

Расчетная скорость полета - 32 м/с (это всего лишь некоторая опорная величина, дальше в расчетах скоростью будем варьировать)

Исходный профиль - симметричный 15% (NACA 0015 – близок к исходному)

Мотор - Eurgle RC Plane 1580kv D2810 Brushless Outrunner Back Mounting Motor (300W)

Батарея - 2200мА 3S 25С

Регулятор на 40А

Статика на стенде:

Винт - МА 8х5

Ток - 26А

Мощность - 270W

Тяга - 980 гр.

Для сравнения возьмем два профиля ЦАГИ. Первый – чисто плоско-выпуклый профиль ЦАГИ-719, относительная толщина примерно 10% . Второй профиль тоже ЦАГИ, только он со скругленной передней кромкой. Это ЦАГИ-831.

Наш анализ серьезно облегчается тем, что мы рассматриваем летающее крыло без выраженного фюзеляжа. Поэтому в общей величине аэродинамического сопротивления это можно учесть небольшим поправочным коэффициентом, но на СРАВНИТЕЛЬНЫЕ результаты это не сильно повлияет.

Чтобы провести соответствующие расчеты надо знать аэродинамические характеристики каждого профиля. Начнем с плоско-выпуклого.

Таблица 1. Геометрия профиля ЦАГИ-719.

Геометрия профиля

X

Y+

Y-

0.025

0.04

0.05

0.0538

0.0722

0.0908

0.0974

0.0962

0.0896

0.0785

0.0636

0.0453

0.024

Вот так он выглядит:


Рис. 2. Контур профиля ЦАГИ-719

А его характеристики в таблице ниже.

Таблица 2. Аэродинамические характеристики профиля ЦАГИ-719

?, град

Cy

Cx

k

0.036

0.0366

0.983607

0.17

0.0258

6.589147

0.316

0.0234

13.50427

0.458

0.0242

18.92562

0.0316

18.98734

0.746

0.0424

17.59434

0.876

0.0456

19.21053

1.004

0.0742

13.531

1.14

0.0926

12.31102

1.25

0.1162

10.75731

1.322

0.141

9.375887

1.33

0.1778

7.480315

1.324

0.2448

5.408497

1.19

0.314

3.789809

В расчетах можно пользоваться табличными данными. Только в этом случае придется промежуточные значения интерполировать, а это влечет за собой громоздкие вычисления и вообще не очень удобно. Чтобы этого избежать, я пользуюсь тем, что нас интересует ограниченная область углов атаки, где табличные данные легко аппроксимировать аналитической формулой. Я вывел такие аппроксимирующие формулы для Сх и Су:

Здесь? - угол атаки в градусах.

Смотрим, насколько удачна наша аппроксимация.


Рис. 3. Аппроксимация аэродинамических характеристик профиля ЦАГИ-719

Из графиков видно, что в зоне малых углов атаки приближение аналитическими формулами вполне удовлетворительное.

Таблица 3. Геометрия профиля ЦАГИ-831

Геометрия

X

Y+

Y-

0.025

0.025

0.025

0.057

0.005

0.05

0.07

0.001

0.089

0.106

0.11

0.105

0.095

0.082

0.066

0.046

0.026

Вот так он выглядит:


Рис. 4. Контур профиля ЦАГИ-831

Аэродинамические характеристики в таблице ниже.

Таблица 4. Аэродинамические характеристики профиля ЦАГИ-831

Аэродинамические характеристики

?, град

Cx

Cy

k

0.0140

0.0120

0.857

0.0154

0.1600

10.390

0.0184

0.3080

16.739

0.0236

0.4580

19.407

0.0346

0.6050

17.486

0.0468

0.7540

16.111

0.0612

0.9000

14.706

0.0814

1.0040

12.334

0.1016

1.1600

11.417

0.1242

1.2370

9.960

0.1552

1.2600

8.119

0.1980

1.3950

7.045

0.3204

1.0070

3.143

Для этого профиля выведены такие аппроксимирующие формулы для Сх и Су:

где


Рис. 5. Аппроксимация аэродинамических характеристик профиля ЦАГИ-831

Нам осталось привести характеристики симметричного профиля. Вот они:

Таблица 5. Геометрия профиля NACA -0015

Геометрия профиля

X

Y+

Y-

0.0125

0.02367

0.02367

0.025

0.03268

0.03268

0.05

0.04443

0.04443

0.075

0.0525

0.0525

0.05853

0.05853

0.15

0.06682

0.06682

0.07172

0.07172

0.25

0.07427

0.07427

0.07502

0.07502

0.07254

0.07254

0.06617

0.06617

0.05704

0.05704

0.0458

0.0458

0.03279

0.03279

0.0181

0.0181

0.95

0.01008

0.01008

0.00158

0.00158

Так выглядит симметричный профиль.


Рис. 6. Контур профиля NACA-0015

Таблица 6. Аэродинамические характеристики профиля NACA -0015

Аэродинамические характеристики профиля

?, град

Cy

Cx

k

0.0077

0.000

0.15

0.009

16.667

0.014

21.429

0.45

0.02

22.500

0.031

19.355

0.74

0.042

17.619

0.89

0.06

14.833

1.02

0.075

13.600

1.17

0.095

12.316

0.119

10.924

1.42

Так выглядят графики аэродинамических характеристик для этого профиля.


Рис. 7. Аппроксимация аэродинамических характеристик профиля NACA -0015

Теперь у нас есть все данные для проведения сравнительных расчетов. Рассмотрим прямолинейный установившийся горизонтальный полет с постоянной скоростью. Поскольку в таком полете подъемная сила уравновешивает вес модели, то для каждой скорости можно найти требуемый балансировочный угол атаки. Для этого мы зададимся некоторым диапазоном скоростей полета модели. Для каждой скорости полета вычислим лобовое сопротивление. Поскольку в полете с постоянной скоростью тяга уравновешивает лобовое сопротивление, то, имея угол атаки, мы это сопротивление вычислим, и получим потребную тягу для полета на этой скорости.

X – лобовое сопротивление

S – площадь крыла

V – скорость полета

– плотность воздуха

Последовательность расчетов следующая. Задаемся скоростью полета в интересующем нас диапазоне. Тогда из выражения для Y можно вычислить потребное значение коэффициента подъемной силы для установившегося полета на этой скорости.

Имея для каждого профиля аппроксимирующие формулы, мы по значению Cy вычислим потребное значение балансировочного угла атаки. Например, из этой формулы для NACA -0015.

получим

Подставив его в выражение для Cx,

получим величину лобового сопротивления, равного потребной тяге для данной скорости полета. Это простая арифметика и я не буду здесь приводить пример числового расчета, а сразу приведу результат в виде таблицы и графика потребных тяг для всех трех профилей.

Таблица 7. Зависимость потребной тяги от скорости полета

Потребная тяга, г

Скорость полета, м/с

Профиль крыла

V

ЦАГИ-831

ЦАГИ-719

NACA-0015

Из этой таблички видно, что для опорной скорости полета 32 м/с наименьшая потребная тяга у профиля ЦАГИ-831. Затем идет симметричный профиль NACA-0015, и хуже всего результаты у профиля ЦАГИ-719. Наглядно все это продемонстрировано на графике.


Рис. 8. График потребных тяг сравниваемых профилей в зависимости от скорости полета

В общем, предварительные результаты расчетов катастрофические для профиля ЦАГИ-719. Получается, что этот профиль хорошо летит в диапазоне скоростей полета 6-10 м/с. Такой полет происходит на околонулевом угле атаки при скоростях менее 40 км в час. Для полета на более высоких скоростях, в частности для заданной скорости 32 м/c (115 км/ч) необходимо лететь на ОТРИЦАТЕЛЬНОМ угле атаки около четырех градусов! Это чистая теория, на практике так модель лететь не будет. Ею будет практически невозможно управлять. Но вывод однозначен - этот профиль не для таких моделей.

Стоит заметить, что выбранные два профиля ЦАГИ существенно отличаются скруглением носка, и теперь видно насколько это влияет на летные характеристики крыла. Я намеренно взял два таких похожих профиля, у которых только носок разный, чтобы показать это влияние.

Также из таблицы можно видеть, что при одинаковой располагаемой тяге в зоне скоростей выше опорной разница в развиваемой скорости составит примерно процентов пятнадцать. То есть преимущество (в данном случае у ЦАГИ-831 по сравнению с NACA-0015) у несимметричного профиля перед симметричным есть, но небольшое! Для симметричного профиля NACA-0015 балансировочный угол на расчетной скорости 115 км в час положительный, примерно полградуса, потребная тяга на этом режиме примерно 270 грамм.

Я думаю, что если и дальше исследовать вопрос, то может быть стоит посмотреть более тонкие симметричные профили. Хотя если наложено ограничение на максимальную допустимую перегрузку из условий прочности, то время установившегося виража линейно растет с увеличением скорости полета. То есть более тонкие симметричные профили приведут к росту скорости, но снижению маневренности.

Дебаты на тему маневренность против скорости активно велись перед Второй Мировой Войной. Мессершмитты Me -109 против наших Чаек (И-153) и Ишачков (И-16). Скорость победила. Но в тех боях не было правил. Не было ограничения полетной зоны и т.п. Что лучше для боя радиоуправляемых моделей – не мне решать.

В заключение хотел бы указать то направление, в котором было бы целесообразно продолжить теоретические изыскания, после того, как вы определились с профилем крыла. Это оптимизация винтомоторной группы (ВМГ). Мощность мотора – обороты (kv) – диаметр и шаг винта. Но это уже совсем другая тема…

Здесь же я хочу выразить благодарность Геннадию Шабельскому (SURHAND ) и Тарасу Кушниренко (Kushnirenko ) за поддержку и практическую помощь в написании данной статьи.

tctnanotec.ru - Портал о дизайне и ремонте ванной комнаты